Articles | Volume 10, issue 2
https://doi.org/10.5194/jsss-10-281-2021
https://doi.org/10.5194/jsss-10-281-2021
Regular research article
 | 
10 Dec 2021
Regular research article |  | 10 Dec 2021

Monitor and control test room for investigating thermal performance of panels incorporating phase-change material

Marwa Othmen, Radwen Bahri, Slaheddine Najar, and Ahmed Hannachi

Related subject area

Sensor principles and phenomena: Thermal sensors
Miniaturized differential scanning calorimeter with an integrated mass sensing system: first steps
Johanna Distler, Thomas Wöhrl, Robin Werner, Michael Gerlach, Michael Gollner, Florian Linseis, Jaroslaw Kita, and Ralf Moos
J. Sens. Sens. Syst., 12, 9–19, https://doi.org/10.5194/jsss-12-9-2023,https://doi.org/10.5194/jsss-12-9-2023, 2023
Short summary
Particularities of pyroelectric detectors in absolute measurements of chopped radiation shown for the example of a spectral responsivity calibration in the near- and mid-infrared spectral range at two primary radiometric standards
Tobias Pohl, Peter Meindl, Jörg Hollandt, Uwe Johannsen, and Lutz Werner
J. Sens. Sens. Syst., 11, 61–73, https://doi.org/10.5194/jsss-11-61-2022,https://doi.org/10.5194/jsss-11-61-2022, 2022
Short summary
Novel thermocouples for automotive applications
Paul Gierth, Lars Rebenklau, Klaus Augsburg, Eric Bachmann, and Lars Niedermeyer
J. Sens. Sens. Syst., 7, 43–49, https://doi.org/10.5194/jsss-7-43-2018,https://doi.org/10.5194/jsss-7-43-2018, 2018
Short summary
Enhanced wavelength-selective absorber for thermal detectors based on metamaterials
Astrit Shoshi, Thomas Maier, and Hubert Brueckl
J. Sens. Sens. Syst., 5, 171–178, https://doi.org/10.5194/jsss-5-171-2016,https://doi.org/10.5194/jsss-5-171-2016, 2016
Short summary
A new low-cost hydrogen sensor build with a thermopile IR detector adapted to measure thermal conductivity
M. Liess
J. Sens. Sens. Syst., 4, 281–288, https://doi.org/10.5194/jsss-4-281-2015,https://doi.org/10.5194/jsss-4-281-2015, 2015
Short summary

Cited articles

Blevins, R. D.: Applied fluid dynamics handbook, N. Y. Van Nostrand Reinhold Co., 568 pp., 1984. 
Borreguero, A. M., Luz Sánchez, M., Valverde, J. L., Carmona, M., and Rodríguez, J. F.: Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content, Appl. Energ., 88, 930–937, 2011. 
Centre technique des matériaux de construction, de la céramique et du verre: SOFRIBAT30AP, Technical data Report SOFRIBAT30AP, Centre technique des matériaux de construction, de la céramique et du verre, Tunisia, 2014. 
EC: Communication from the commission to the European Parliament, the European Council, the Council, the European Economic and SO – 55 cial committee and the committee of the region, available at: https://op.europa.eu/en/publication-detail/-/publication/b828d165-1c22-11ea-8c1f-01aa75ed71a1/language-en (last access: 27 July 2021), 2019 
Eddhahak-Ouni, A., Colin, J., and Bruneau, D.: On an experimental innovative setup for the macro scale thermal analysis of materials: Application to the Phase Change Material (PCM) wallboards, Energy Build., 64, 231–238, 2013. 
Download
Short summary
A homemade experimental setup was developed using actuators and temperature sensors monitored by Arduino platforms to characterize thermal behaviors of composite panels containing phase-change materials (PCMs). The characterization is based on modeling steady-state thermal conduction and natural convection heat transfer. Temperature measurements allow for obtaining effective thermal conductivity, phase shift time, and energy storage capacity of composite panels incorporating PCMs.