Articles | Volume 8, issue 1
https://doi.org/10.5194/jsss-8-87-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.Special issue:
Highly sensitive capacitive pressure sensors for robotic applications based on carbon nanotubes and PDMS polymer nanocomposite
Related authors
Related subject area
Applications: Robotics
An airborne measurement system to detect, locate, and quantify methane emissions with attitude-based wind speed estimation
A study of hand-movement gestures to substitute for mouse-cursor placement using an inertial sensor
J. Sens. Sens. Syst., 13, 211–218,
2024J. Sens. Sens. Syst., 8, 95–104,
2019Cited articles
Cao, Y., Li, T., Gu, Y., Luo, H., Wang, S., and Zhang, T.:
Fingerprint-inspired flexible tactile sensor for accurately discerning
surface texture, Small, 14, 1703902, https://doi.org/10.1002/smll.201703902, 2018. a
Chen, L., Liu, J., Wang, X., Ji, B., Chen, X., and Yang, B.: Flexible
capacitive hydrogel tactile sensor with adjustable measurement range using
liquid crystal and carbon nanotubes composites, IEEE T. Electron Dev., 64,
1968–1972, https://doi.org/10.1109/TED.2017.2682099, 2017. a
Cui, J., Zhang, B., Duan, J., Guo, H., Tang, J., Cui, J., Zhang, B., Duan,
J., Guo, H., and Tang, J.: Flexible pressure sensor with ag wrinkled
electrodes based on PDMS substrate, Sensors, 16, 2131, https://doi.org/10.3390/s16122131,
2016. a, b
Dinh, T., Nguyen, T., Phan, H., Fastier-Wooller, J., Tran, C., Nguyen, N.,
and Dao, D. V.: Electrical Resistance of Carbon Nanotube Yarns Under
Compressive Transverse Pressure, IEEE ELECTR DEVICE L, 39, 584–587,
https://doi.org/10.1109/LED.2018.2806181, 2018. a
Emon, M., Choi, J.-W., Emon, M. O. F., and Choi, J.-W.: Flexible
piezoresistive sensors embedded in 3d printed tires, Sensors, 17, 656,
https://doi.org/10.3390/s17030656, 2017. a