Articles | Volume 13, issue 1
https://doi.org/10.5194/jsss-13-1-2024
https://doi.org/10.5194/jsss-13-1-2024
Regular research article
 | 
26 Jan 2024
Regular research article |  | 26 Jan 2024

Laser-tracker-based reference measurement for geometric calibration of phase-measuring deflectometry with active display registration

Yann Sperling and Ralf Bernhard Bergmann

Related subject area

Measurement systems: Multi-sensor systems
In situ analysis of hydration and ionic conductivity of sulfonated poly(ether ether ketone) thin films using an interdigitated electrode array and a nanobalance
Hendrik Wulfmeier, Niklas Warnecke, Luca Pasquini, Holger Fritze, and Philippe Knauth
J. Sens. Sens. Syst., 11, 51–59, https://doi.org/10.5194/jsss-11-51-2022,https://doi.org/10.5194/jsss-11-51-2022, 2022
Short summary
Method and experimental investigation of surface heat dissipation measurement using 3D thermography
Robert Schmoll, Sebastian Schramm, Tom Breitenstein, and Andreas Kroll
J. Sens. Sens. Syst., 11, 41–49, https://doi.org/10.5194/jsss-11-41-2022,https://doi.org/10.5194/jsss-11-41-2022, 2022
Short summary
Determination of the mean base circle radius of gears by optical multi-distance measurements
Marc Pillarz, Axel von Freyberg, and Andreas Fischer
J. Sens. Sens. Syst., 9, 273–282, https://doi.org/10.5194/jsss-9-273-2020,https://doi.org/10.5194/jsss-9-273-2020, 2020
Short summary
Pedestrian navigation system based on the inertial measurement unit sensor for outdoor and indoor environments
Marcin Uradzinski and Hang Guo
J. Sens. Sens. Syst., 9, 7–13, https://doi.org/10.5194/jsss-9-7-2020,https://doi.org/10.5194/jsss-9-7-2020, 2020
Sensor characterization by comparative measurements using a multi-sensor measuring system
Sebastian Hagemeier, Markus Schake, and Peter Lehmann
J. Sens. Sens. Syst., 8, 111–121, https://doi.org/10.5194/jsss-8-111-2019,https://doi.org/10.5194/jsss-8-111-2019, 2019
Short summary

Cited articles

Bartsch, J. and Bergmann, R. B.: Phasenmessende Deflektometrie mit aktiver Displayregistrierung, in: Proc. of 121th DGaO conference, ISSN: 1614-8436, urn:nbn:de:0287-2020-A012-2, https://www.dgao-proceedings.de/download/121/121_a12.pdf (last access: 27 September 2023), 2020. a
Bartsch, J., Kalms, M., and Bergmann, R. B.: Improving the calibration of phase measuring deflectometry by a polynomial representation of the display shape, J. Eur. Opt. Soc.-Rapid, 49, 20, https://doi.org/10.1186/s41476-019-0116-1, 2019. a
Bartsch, J., Sperling, Y., and Bergmann, R. B.: Efficient vision ray calibration of multi-camera systems, Opt. Express, 29, 17125–17139, https://doi.org/10.1364/OE.424337, 2021. a
Bothe, T., Li, W., Schulte, M., von Kopylow, C., Bergmann, R. B., and Jüptner, W. P. O.: Vision ray calibration for the quantitative geometric description of general imaging and projection optics in metrology, Appl. Optics, 49, 5851–5860, https://doi.org/10.1364/AO.49.005851, 2010. a
Burge, J. H., Su, P., Zhao, C., and Zobrist, T.: Use of a commercial laser tracker for optical alignment, in: Optical System Alignment and Tolerancing, edited by: Sasian, J. M. and Ruda, M. C., International Society for Optics and Photonics, SPIE, 6676, p. 66760E, https://doi.org/10.1117/12.736705, 2007. a
Download
Short summary
Phase-measuring deflectometry is an optical shape measurement technique for reflective surfaces. The basic idea is that a pattern that is observed through reflection on a curved surface gets distorted and reveals information about its shape. In this work we describe a method to move the pattern to obtain data for quantitative shape determination. The experimental setup is calibrated. With a laser tracker we reveal calibration errors and discuss their influence on the reconstructed shape.