Articles | Volume 14, issue 2
https://doi.org/10.5194/jsss-14-139-2025
Special issue:
https://doi.org/10.5194/jsss-14-139-2025
Regular research article
 | 
24 Jul 2025
Regular research article |  | 24 Jul 2025

Silicon-based thermal conductivity detector for gas sensing and gas chromatography

Alexandre Teulle, Mathis Baret, Murielle Jurdit, Florence Ricoul, and Jean-Baptiste Tissot

Related subject area

Sensor technologies: MEMS technology
Effects of potassium sodium niobate (KNN) thickness on biaxial non-resonant microelectromechanical systems (MEMS) mirror performance
Laurent Mollard, Christel Dieppedale, Antoine Hamelin, Romain Liechti, and Gwenael Le Rhun
J. Sens. Sens. Syst., 14, 27–35, https://doi.org/10.5194/jsss-14-27-2025,https://doi.org/10.5194/jsss-14-27-2025, 2025
Short summary
Calibrating a high-speed contact-resonance profilometer
Michael Fahrbach, Sebastian Friedrich, Brunero Cappella, and Erwin Peiner
J. Sens. Sens. Syst., 9, 179–187, https://doi.org/10.5194/jsss-9-179-2020,https://doi.org/10.5194/jsss-9-179-2020, 2020
Short summary
Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors
Andi Setiono, Michael Fahrbach, Jiushuai Xu, Maik Bertke, Wilson Ombati Nyang'au, Gerry Hamdana, Hutomo Suryo Wasisto, and Erwin Peiner
J. Sens. Sens. Syst., 8, 37–48, https://doi.org/10.5194/jsss-8-37-2019,https://doi.org/10.5194/jsss-8-37-2019, 2019
Short summary
Calibration of tri-axial MEMS accelerometers in the low-frequency range – Part 2: Uncertainty assessment
Giulio D'Emilia, Antonella Gaspari, Fabrizio Mazzoleni, Emanuela Natale, and Alessandro Schiavi
J. Sens. Sens. Syst., 7, 403–410, https://doi.org/10.5194/jsss-7-403-2018,https://doi.org/10.5194/jsss-7-403-2018, 2018
Short summary
Calibration of tri-axial MEMS accelerometers in the low-frequency range – Part 1: comparison among methods
Giulio D'Emilia, Antonella Gaspari, Fabrizio Mazzoleni, Emanuela Natale, and Alessandro Schiavi
J. Sens. Sens. Syst., 7, 245–257, https://doi.org/10.5194/jsss-7-245-2018,https://doi.org/10.5194/jsss-7-245-2018, 2018
Short summary

Cited articles

Belser, R. B. and Hicklin, W. H.: Temperature coefficients of resistance of metallic films in the temperature range 25 to 600 °C, J. Appl. Phys., 30, 313–322, https://doi.org/10.1063/1.1735158, 1959. 
Berndt, D., Muggli, J., Wittwer, F., Langer, C., Heinrich, S., Knittel, T., and Schreiner, R.: MEMS-based thermal conductivity sensor for hydrogen gas detection in automotive applications, Sens. Actuat. A, 305, 111670, https://doi.org/10.1016/j.sna.2019.111670, 2020. 
Bourlon, B., Pham-Ho, A., Beche, J. F., and Constantin, O.: Feasability of a thermal conductivity based CO2 and humidity low cost sensor, in: 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences, Kaohsiung, Taiwan 11–15 November 2018, 2018. 
Cho, W., Kim, T., and Shin, H.: Thermal conductivity detector (TCD)-type gas sensor based on a batch-fabricated 1D nanoheater for ultra-low power consumption, Sens. Actuat. B, 371, 132541, https://doi.org/10.1016/j.snb.2022.132541, 2022. 
De Graaf, G., Prouza, A. A., Ghaderi, M., and Wolffenbuttel, R. F.: Micro thermal conductivity detector with flow compensation using a dual MEMS device, Sens. Actuat. A, 249, 186–198, https://doi.org/10.1016/j.sna.2016.08.019, 2016. 
Download
Short summary
We present a sensor with an original architecture for gas sensing that is 4 times more efficient than other sensors based on the same detection technology. It has a small volume (less than 1 cm3), low cost, and low power consumption, making it possible for it to be used in compact systems and even in smartphones. It is able to detect small changes in carbon dioxyde concentrations in ambient air for indoor air quality monitoring.
Share
Special issue