Articles | Volume 9, issue 1
J. Sens. Sens. Syst., 9, 43–50, 2020
https://doi.org/10.5194/jsss-9-43-2020

Special issue: Sensors and Measurement Systems 2019

J. Sens. Sens. Syst., 9, 43–50, 2020
https://doi.org/10.5194/jsss-9-43-2020

Review paper 11 Feb 2020

Review paper | 11 Feb 2020

A mobile nondestructive testing (NDT) system for fast detection of impact damage in fiber-reinforced plastics (FRP)

Johannes Rittmann et al.

Related authors

Integrated defect sensor for the inspection of fiber-reinforced plastics using air-coupled ultrasound
Yannick Bernhardt and Marc Kreutzbruck
J. Sens. Sens. Syst., 9, 127–132, https://doi.org/10.5194/jsss-9-127-2020,https://doi.org/10.5194/jsss-9-127-2020, 2020
Short summary

Related subject area

Measurement systems: Sensor-actuator systems
Development and test of a highly sensitive and selective hydrogen sensor system
Pramit Sood, Jens Zosel, Michael Mertig, Wolfram Oelßner, Olaf Herrmann, and Michael Woratz
J. Sens. Sens. Syst., 9, 309–317, https://doi.org/10.5194/jsss-9-309-2020,https://doi.org/10.5194/jsss-9-309-2020, 2020
Short summary
Integrated defect sensor for the inspection of fiber-reinforced plastics using air-coupled ultrasound
Yannick Bernhardt and Marc Kreutzbruck
J. Sens. Sens. Syst., 9, 127–132, https://doi.org/10.5194/jsss-9-127-2020,https://doi.org/10.5194/jsss-9-127-2020, 2020
Short summary
Modelling and model verification of an autonomous threshold sensor for humidity measurements
Nikolai Gulnizkij and Gerald Gerlach
J. Sens. Sens. Syst., 9, 1–6, https://doi.org/10.5194/jsss-9-1-2020,https://doi.org/10.5194/jsss-9-1-2020, 2020
Short summary
Close-to-process strain measurement in ultrasonic vibration-assisted turning
Simon Kimme, Nessma Hafez, Christian Titsch, Jonas Maximilian Werner, Andreas Nestler, and Welf-Guntram Drossel
J. Sens. Sens. Syst., 8, 285–292, https://doi.org/10.5194/jsss-8-285-2019,https://doi.org/10.5194/jsss-8-285-2019, 2019
Short summary
IO-Link Wireless enhanced factory automation communication for Industry 4.0 applications
Ralf Heynicke, Dmytro Krush, Christoph Cammin, Gerd Scholl, Bernd Kaercher, Jochen Ritter, Pascal Gaggero, and Markus Rentschler
J. Sens. Sens. Syst., 7, 131–142, https://doi.org/10.5194/jsss-7-131-2018,https://doi.org/10.5194/jsss-7-131-2018, 2018
Short summary

Cited articles

Avdelidis, N. P., Hawtin, B. C., and Almond, D. P.: Transient thermography in the assessment of defects of aircraft composites, NDT & E Int., 36, 433–439, https://doi.org/10.1016/S0963-8695(03)00052-5, 2003. 
Bull, D. J., Spearing, S. M., Sinclair, I., and Helfen, L.: Three-dimensional assessment of low velocity impact damage in particle toughened composite laminates using micro-focus X-ray computed tomography and synchrotron radiation laminography, Composit. Pt. A, 52, 62–69, https://doi.org/10.1016/j.compositesa.2013.05.003, 2013. 
Gleiter, A., Spießberger, C., and Busse, G.: Improved ultrasound activated thermography using frequency analysis, Quant. InfraRed Thermogr. J., 4, 155–164, https://doi.org/10.3166/qirt.4.155-164, 2007. 
Han, X., Zeng, Z., Li, W., Islam, M. S., Lu, J., Loggins, V., Yitamben, E., Favro, L. D., Newaz, G., and Thomas, R. L.: Acoustic chaos for enhanced detectability of cracks by sonic infrared imaging, J. Appl. Phys., 95, 3792–3797, 2004. 
Hidalgo-Gato, R., Andrés, J. R., López-Higuera, J. M., and Madruga, F. J.: Quantification by Signal to Noise Ratio of Active Infrared Thermography Data Processing Techniques, Opt. Photon. J., 03, 20–26, https://doi.org/10.4236/opj.2013.34A004, 2013. 
Download
Short summary
A new approach with an acousto-thermal nondestructive testing technique was developed and integrated into a mobile prototype NDT device. It is based on well-known ultrasonic thermography and uses hardware, specimen and local defect resonances for efficient excitation. It was specifically designed for fast and easy-to-interpret application in impact damage detection. Its handheld design allows for mobile usage at impact-injured FRP structures with a testing time of only 1 min.