Articles | Volume 11, issue 2
J. Sens. Sens. Syst., 11, 211–218, 2022
https://doi.org/10.5194/jsss-11-211-2022
J. Sens. Sens. Syst., 11, 211–218, 2022
https://doi.org/10.5194/jsss-11-211-2022
Regular research article
27 Jul 2022
Regular research article | 27 Jul 2022

Three-dimensional coil system for the generation of traceable magnetic vector fields

Nicolas Rott et al.

Related subject area

Sensor principles and phenomena: Magnetic sensors
Traceably calibrated scanning Hall probe microscopy at room temperature
Manuela Gerken, Aurélie Solignac, Davood Momeni Pakdehi, Alessandra Manzin, Thomas Weimann, Klaus Pierz, Sibylle Sievers, and Hans Werner Schumacher
J. Sens. Sens. Syst., 9, 391–399, https://doi.org/10.5194/jsss-9-391-2020,https://doi.org/10.5194/jsss-9-391-2020, 2020
Short summary
Homogenous nuclear magnetic resonance probe using the space harmonics suppression method
Pauline de Pellegars, Liu Pan, Rahima Sidi-Boulenouar, Eric Nativel, Michel Zanca, Eric Alibert, Sébastien Rousset, Maida Cardoso, Jean-Luc Verdeil, Nadia Bertin, Christophe Goze-Bac, Julien Muller, Rémy Schimpf, and Christophe Coillot
J. Sens. Sens. Syst., 9, 117–125, https://doi.org/10.5194/jsss-9-117-2020,https://doi.org/10.5194/jsss-9-117-2020, 2020
Short summary
Development of a rotating-coil scanner for superconducting accelerator magnets
Piotr Rogacki, Lucio Fiscarelli, Stephan Russenschuck, and Kay Hameyer
J. Sens. Sens. Syst., 9, 99–107, https://doi.org/10.5194/jsss-9-99-2020,https://doi.org/10.5194/jsss-9-99-2020, 2020
Short summary
Magnetic-field CMOS microsensor for low-energy electric discharge detection
Mohamed Hadj Said, Farès Tounsi, Libor Rufer, Hatem Trabelsi, Brahim Mezghani, and Andrea Cavallini
J. Sens. Sens. Syst., 7, 569–575, https://doi.org/10.5194/jsss-7-569-2018,https://doi.org/10.5194/jsss-7-569-2018, 2018
Short summary
Comparison of defect detection limits in Lorentz force eddy current testing and classical eddy current testing
Jan Marc Otterbach, Reinhard Schmidt, Hartmut Brauer, Marek Ziolkowski, and Hannes Töpfer
J. Sens. Sens. Syst., 7, 453–459, https://doi.org/10.5194/jsss-7-453-2018,https://doi.org/10.5194/jsss-7-453-2018, 2018
Short summary

Cited articles

Acuña, M. H.: Space-based magnetometers, Rev. Sci. Inst., 73, 3717–3736, https://doi.org/10.1063/1.1510570, 2002. a
Auster, H. U., Fornacon, K. H., Georgescu, E., Glassmeier, K. H., and Motschmann, U.: Calibration of flux-gate magnetometers using relative motion, Measurement Sci. Technol., 13, 1124–1131, https://doi.org/10.1088/0957-0233/13/7/321, 2002. a
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML: Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008(E), GUM 1995 with minor corrections, Evaluation of measurement data, Joint Committee for Guides in Metrology, 2008. a
Bock, R.: Über die Homogenität des magnetischen Feldes in der Helmholtz-Gaugainschen Doppelkreisanordnung, Z. Phys., 54, 257–259, https://doi.org/10.1007/BF01339843, 1929. a
Braunbek, W.: Die Erzeugung weitgehend homogener Magnetfelder durch Kreisströme, Z. Phy., 88, 399–402, https://doi.org/10.1007/BF01343500, 1934. a, b
Download
Short summary
We describe the development and characterization of a three-dimensional (3D) magnetic coil system that is able to produce magnetic flux densities of up to 2 mT in an arbitrary field direction. The coil system can be used to calibrate 3D magnetometers efficiently, and the measurements are traceable to national SI units.