Articles | Volume 6, issue 2
https://doi.org/10.5194/jsss-6-367-2017
https://doi.org/10.5194/jsss-6-367-2017
Regular research article
 | 
16 Nov 2017
Regular research article |  | 16 Nov 2017

Concept for a MEMS-type vacuum sensor based on electrical conductivity measurements

Friederike Julia Giebel, Marcel Köhle, Till Stramm, Klaus T. Kallis, and Horst L. Fiedler

Related authors

Micro-structured electron accelerator for the mobile gas ionization sensor technology
C. M. Zimmer, K. T. Kallis, and F. J. Giebel
J. Sens. Sens. Syst., 4, 151–157, https://doi.org/10.5194/jsss-4-151-2015,https://doi.org/10.5194/jsss-4-151-2015, 2015

Related subject area

Sensor technologies: MEMS technology
Calibrating a high-speed contact-resonance profilometer
Michael Fahrbach, Sebastian Friedrich, Brunero Cappella, and Erwin Peiner
J. Sens. Sens. Syst., 9, 179–187, https://doi.org/10.5194/jsss-9-179-2020,https://doi.org/10.5194/jsss-9-179-2020, 2020
Short summary
Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors
Andi Setiono, Michael Fahrbach, Jiushuai Xu, Maik Bertke, Wilson Ombati Nyang'au, Gerry Hamdana, Hutomo Suryo Wasisto, and Erwin Peiner
J. Sens. Sens. Syst., 8, 37–48, https://doi.org/10.5194/jsss-8-37-2019,https://doi.org/10.5194/jsss-8-37-2019, 2019
Short summary
Calibration of tri-axial MEMS accelerometers in the low-frequency range – Part 2: Uncertainty assessment
Giulio D'Emilia, Antonella Gaspari, Fabrizio Mazzoleni, Emanuela Natale, and Alessandro Schiavi
J. Sens. Sens. Syst., 7, 403–410, https://doi.org/10.5194/jsss-7-403-2018,https://doi.org/10.5194/jsss-7-403-2018, 2018
Short summary
Calibration of tri-axial MEMS accelerometers in the low-frequency range – Part 1: comparison among methods
Giulio D'Emilia, Antonella Gaspari, Fabrizio Mazzoleni, Emanuela Natale, and Alessandro Schiavi
J. Sens. Sens. Syst., 7, 245–257, https://doi.org/10.5194/jsss-7-245-2018,https://doi.org/10.5194/jsss-7-245-2018, 2018
Short summary
Measurement and analysis of certain flight parameters based on MEMS sensors
Jerzy Bakunowicz and Paweł Rzucidło
J. Sens. Sens. Syst., 6, 211–222, https://doi.org/10.5194/jsss-6-211-2017,https://doi.org/10.5194/jsss-6-211-2017, 2017
Short summary

Cited articles

Dankovic, T., Punchihewa, K. A. G., Zaker, E., Farid, S., Habibimehr, P., Feinerman, A., and Bustaa, H.: Extension of operating range towards lower pressures of MEMS-based thermal vacuum gauges by laser-induced heating, Procedia Engineer., 47, 1243–1246, https://doi.org/10.1016/j.proeng.2012.09.378, 2012.
Górecka-Drzazga, A.: Miniature and MEMS-type vacuum sensors and pumps, Vacuum, 83, 1419–1426, https://doi.org/10.1016/j.vacuum.2009.05.003, 2009.
Itikawa, Y.: Cross Sections for Electron Collisions with Oxygen Molecules, J. Phys. Chem. Ref. Data, 38, 1–20, https://doi.org/10.1063/1.3025886, 2009.
Itikawa, Y., Hayashi, M., Ichimura, A., Onda, K., Sakimoto, K., Takayanagi, K., Nakamura, M., Nishimura, H., and Takayanagi, T.: Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules, J. Phys. Chem. Ref. Data, 15, 985–1010, 1986.
Kallis, K., Dietz, D., Subasi, E., Müller, M., Kontis, C., and Zimmer, C.: Design, simulation, fabrication and characterization of nano-scaled acceleration grids, Microelectron. Eng., 121, 118–121, https://doi.org/10.1016/j.mee.2014.04.036, 2014.
Download
Short summary
This article introduces a new idea for a micro vacuum sensor. The measuring principle of the sensor is to measure the electrical conductivity of the residual gas in a vacuum chamber. The conductivity is measured between two electrodes that are only 300 nm apart. It has been shown that this type of sensor allows vacuum pressure measurement from atmospheric pressure to high vacuum at very low voltages.