Articles | Volume 11, issue 2
https://doi.org/10.5194/jsss-11-287-2022
https://doi.org/10.5194/jsss-11-287-2022
Regular research article
 | 
11 Oct 2022
Regular research article |  | 11 Oct 2022

In situ monitoring of used-sand regeneration in foundries by impedance spectroscopy

Luca Bifano, Marco Weider, Alice Fischerauer, Gotthard Wolf, and Gerhard Fischerauer

Related authors

Characterization of sand and sand–binder systems from the foundry industry with electrical impedance spectroscopy
Luca Bifano, Alice Fischerauer, Alfred Liedtke, and Gerhard Fischerauer
J. Sens. Sens. Syst., 10, 43–51, https://doi.org/10.5194/jsss-10-43-2021,https://doi.org/10.5194/jsss-10-43-2021, 2021
Short summary

Related subject area

Applications: Process control
Double entry method for the verification of data a chromatography data system receives
David Thomas Marehn, Detlef Wilhelm, Heike Pospisil, and Roberto Pizzoferrato
J. Sens. Sens. Syst., 8, 207–214, https://doi.org/10.5194/jsss-8-207-2019,https://doi.org/10.5194/jsss-8-207-2019, 2019
Short summary
A customized stand-alone photometric Raman sensor applicable in explosive atmospheres: a proof-of-concept study
Marcel Nachtmann, Shaun Paul Keck, Frank Braun, Hanns Simon Eckhardt, Christoph Mattolat, Norbert Gretz, Stephan Scholl, and Matthias Rädle
J. Sens. Sens. Syst., 7, 543–549, https://doi.org/10.5194/jsss-7-543-2018,https://doi.org/10.5194/jsss-7-543-2018, 2018
Short summary
Annular arrays for novel ultrasonic measurement techniques
Mario Wolf, Elfgard Kühnicke, Sebastian Kümmritz, and Michael Lenz
J. Sens. Sens. Syst., 5, 373–380, https://doi.org/10.5194/jsss-5-373-2016,https://doi.org/10.5194/jsss-5-373-2016, 2016
Short summary
Is it possible to detect in situ the sulfur loading of a fixed bed catalysts with a sensor?
P. Fremerey, A. Jess, and R. Moos
J. Sens. Sens. Syst., 4, 143–149, https://doi.org/10.5194/jsss-4-143-2015,https://doi.org/10.5194/jsss-4-143-2015, 2015
Short summary
Impedance spectroscopy characterization of an interdigital structure for continuous particle measurements in wood-driven heating systems
A. Weiss, M. Bauer, S. Eichenauer, E. A. Stadlbauer, and C.-D. Kohl
J. Sens. Sens. Syst., 4, 37–44, https://doi.org/10.5194/jsss-4-37-2015,https://doi.org/10.5194/jsss-4-37-2015, 2015

Cited articles

Al Rashid, Q. A., Abuel-Naga, H. M., Leong, E.-C., Lu, Y., and Al Abadi, H.: Experimental-artificial intelligence approach for characterizing electrical resistivity of partially saturated clay liners, Appl. Clay Sci., 156, 1–10, https://doi.org/10.1016/j.clay.2018.01.023, 2018. 
Balmus, S.-B., Pascariu, G.-N., Creanga, F., Dumitru, I., and Sandu, D. D.: The cavity perturbation method for the measurement of the relative dielectric permittivity in the micro-wave range, J. Optoelect. ADV M., 8, 971–977, 2006. 
Belyaeva, T. A., Bobrov, P. P., Kroshka, E. S., Lapina, A. S., and Rodionova, O. V.: The effect of very low water content on the complex dielectric permittivity of clays, sand-clay and sand rocks, Meas. Sci. Technol., 28, https://doi.org/10.1088/1361-6501/28/1/014005, 2017. 
Bifano, L., Fischerauer, A., and Fischerauer, G.: Investigation of complex permittivity spectra of foundry sands, Tech. Mess., 87, 372–380, https://doi.org/10.1515/teme-2019-0121, 2020. 
Bifano, L., Fischerauer, A., Liedtke, A., and Fischerauer, G.: Characterization of sand and sand-binder systems from foundry industry with impedance spectroscopy, J. Sens. Sens. Syst., 10, 43–51, https://doi.org/10.5194/jsss-10-43-2021, 2021. 
Download
Short summary
This work deals with process monitoring. In particular, the process of used-sand regeneration is monitored with the aid of impedance spectroscopy and can be controlled in the future with the measurement data obtained in this way. This results in the following aspects: a consistently high quality of the process material is realized by a controlled process. At the same time, energy consumption is minimized. The result is a process that is both more resource-efficient and more economical.