Articles | Volume 15, issue 1
https://doi.org/10.5194/jsss-15-9-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/jsss-15-9-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automated contactless characterization of local thin film thickness and film stress with standard MEMS structures at wafer level
Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27–29, 1040 Vienna, Austria
Christoph Schallert
Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27–29, 1040 Vienna, Austria
Andre Gesing
Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27–29, 1040 Vienna, Austria
Doris Steinmüller-Nethl
CarbonCompetence GmbH, Weisstraße 9, 6112 Wattens, Austria
Georg Pfusterschmied
Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27–29, 1040 Vienna, Austria
Ulrich Schmid
Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27–29, 1040 Vienna, Austria
Related authors
Dominik Huber, Michael Schneider, Paul Fulmek, Georg Pfusterschmied, and Ulrich Schmid
J. Sens. Sens. Syst., 14, 89–98, https://doi.org/10.5194/jsss-14-89-2025, https://doi.org/10.5194/jsss-14-89-2025, 2025
Short summary
Short summary
Photo-thermal actuation and laser Doppler vibrometry enable fast, contactless characterization of MEMS (microelectromechanical system) resonators already before electrical connections are made. This paper details a tailored setup combining a precision stage, vacuum chamber, laser diode, and vibrometer to analyze silicon MEMS devices on a wafer level. Tests reveal how silicon device layer thickness affects resonance frequency and identify dominant loss mechanisms in different vibrational modes.
Michael Schneider, Mahdi Mortada, Dominik Mayrhofer, Manfred Kaltenbacher, and Ulrich Schmid
J. Sens. Sens. Syst., 14, 227–235, https://doi.org/10.5194/jsss-14-227-2025, https://doi.org/10.5194/jsss-14-227-2025, 2025
Short summary
Short summary
Bistability is a mechanical phenomenon resulting in two stable, switchable states similar to a light switch. Micromachined piezoelectric bistable loudspeakers can utilize this effect to generate ultrasonic pulses with substantial loudness for applications such as distance measurements. In this work, we study different aspects of such a micromachined ultrasonic loudspeaker and demonstrate that such a device is feasible for ranging applications.
Dominik Huber, Michael Schneider, Paul Fulmek, Georg Pfusterschmied, and Ulrich Schmid
J. Sens. Sens. Syst., 14, 89–98, https://doi.org/10.5194/jsss-14-89-2025, https://doi.org/10.5194/jsss-14-89-2025, 2025
Short summary
Short summary
Photo-thermal actuation and laser Doppler vibrometry enable fast, contactless characterization of MEMS (microelectromechanical system) resonators already before electrical connections are made. This paper details a tailored setup combining a precision stage, vacuum chamber, laser diode, and vibrometer to analyze silicon MEMS devices on a wafer level. Tests reveal how silicon device layer thickness affects resonance frequency and identify dominant loss mechanisms in different vibrational modes.
Krisztián Dubek, Christoph Schneidhofer, Nicole Dörr, and Ulrich Schmid
J. Sens. Sens. Syst., 13, 9–23, https://doi.org/10.5194/jsss-13-9-2024, https://doi.org/10.5194/jsss-13-9-2024, 2024
Short summary
Short summary
A new method for water detection in lubricated rail components is presented. It is based on a robust humidity sensor combined with robust data evaluation to determine the water content of greases. Based on a laboratory evaluation in the relevant environment, the presented approach offers an online monitoring tool to predict the water content of grease-lubricated rail parts, thereby enhancing the reliability and safety while reducing the maintenance costs and downtime of railway wagons.
Cited articles
Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G. B., Barthel, E., Doll, G. L., Murray, C. E., Stoessel, C. H., and Martinu, L.: Review Article: Stress in thin films and coatings: Current status, challenges, and prospects, J. Vacuum Sci. Technol. A, 36, https://doi.org/10.1116/1.5011790, 2018. a, b
Baryshev, S. V., Erck, R. A., Moore, J. F., Zinovev, A. V., Tripa, C. E., and Veryovkin, I. V.: Characterization of surface modifications by white light interferometry: applications in ion sputtering, laser ablation, and tribology experiments, J. Vis. Exp., e50260, https://doi.org/10.3791/50260, 2013. a
Bhatt, G., Manoharan, K., Chauhan, P. S., and Bhattacharya, S.: MEMS Sensors for Automotive Applications: A Review, Springer Singapore, Singapore, 223–239, ISBN 978-981-13-3290-6, https://doi.org/10.1007/978-981-13-3290-6_12, 2019. a
Boning, S. D. and Chung, E. J.: Statistical metrology: understanding spatial variation in semiconductor manufacturing, in: Proc. SPIE, vol. 2874, 16–26, https://doi.org/10.1117/12.250817, 1996. a
Bosseboeuf, A. and Petitgrand, S.: Application of microscopic interferometry techniques in the MEMS field, in: vol. 5145 of Optical Metrology, SPIE, https://doi.org/10.1117/12.500134, 2003. a
Brouzet, V., Gredy, V., Chenevas-Paule, F., Le-Chao, K., Guiheux, D., Laurent, A., Coutellier, V., and Le-Cunff, D.: Full Wafer Stress Metrology for Dielectric Film Characterization: Use Case, in: 2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 1–7, ISBN 2376-6697, https://doi.org/10.1109/ASMC.2019.8791784, 2019. a
Chason, E. and Guduru, P. R.: Tutorial: Understanding residual stress in polycrystalline thin films through real-time measurements and physical models, J. Appl. Phys., 119, https://doi.org/10.1063/1.4949263, 2016. a, b
Chen, K.-S. and Ou, K.-S.: Chapter 17 – MEMS Residual Stress Characterization: Methodology and Perspective, William Andrew Publishing, Boston, 398–412, ISBN 978-0-323-29965-7, https://doi.org/10.1016/B978-0-323-29965-7.00017-8, 2015. a, b
Chircov, C. and Grumezescu, A. M.: Microelectromechanical Systems (MEMS) for Biomedical Applications, Micromachines, 13, 164, https://doi.org/10.3390/mi13020164, 2022. a
Conor, O., Martin, H., Magali, B., Russell, D., and Alan, M.: Characterization of micromechanical structures using white-light interferometry, Meas. Sci. Technol., 14, 1807, https://doi.org/10.1088/0957-0233/14/10/310, 2003. a
Cuthrell, R. E., Mattox, D. M., Peeples, C. R., Dreike, P. L., and Lamppa, K. P.: Residual stress anisotropy, stress control, and resistivity in post cathode magnetron sputter deposited molybdenum films, J. Vacuum Sci. Technol. A, 6, 2914–2920, https://doi.org/10.1116/1.575451, 1988. a
De Wolf, I.: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits, Semiconduct. Sci. Technol., 11, 139, https://doi.org/10.1088/0268-1242/11/2/001, 1996. a
Fachin, F., Nikles, S. A., Dugundji, J., and Wardle, B. L.: Analytical extraction of residual stresses and gradients in MEMS structures with application to CMOS-layered materials, J. Micromech. Microeng., 21, 095017, https://doi.org/10.1088/0960-1317/21/9/095017, 2011. a
Gennat, M., Meinig, M., Shaporin, A., Kurth, S., Rembe, C., and Tibken, B.: Determination of Parameters With Uncertainties for Quality Control in MEMS Fabrication, J. Microelectromech. Syst., 22, 613–624, https://doi.org/10.1109/JMEMS.2012.2236076, 2013. a
Genzel, C., Denks, I. A., and Klaus, M.: Residual Stress Analysis by X-Ray Diffraction Methods, Wiley-VCH Verlag & Co. KGaA, 127–154, https://doi.org/10.1002/9783527649884.ch5, 2012. a
Guckel, H., Burns, D., Rutigliano, C., Lovell, E., and Choi, B.: Diagnostic microstructures for the measurement of intrinsic strain in thin films, J. Micromech. Microeng., 2, 86, https://doi.org/10.1088/0960-1317/2/2/004, 1992. a
Huber, D., Platz, D., Gesing, A., Fulmek, P., Steinmüller-Nethl, D., Pfusterschmied, G., and Schmid, U.: Impact of Grain Size on The Q-Factor of Poly-Crystalline Diamond Mems Resonators, in: 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS), 915–918, ISBN 2160-1968, https://doi.org/10.1109/MEMS58180.2024.10439421, 2024. a
Huber, D., Jurekovic, P., Schallert, C., Pfusterschmied, G., and Schmid, U.: Impact of Nitrogen Doping on the Q-Factor of Polycrystalline 3C-SiC MEMS Resonators, in: Eurosensors 2025, AMA Service GmbH, 72–73, https://doi.org/10.5162/EUROSENSORS2025/M2.2.4, 2025a. a
Huber, D., Schneider, M., Fulmek, P., Pfusterschmied, G., and Schmid, U.: Tailored measurement setup for the contactless characterization of MEMS resonators at the wafer level, J. Sens. Sens. Syst., 14, 89–98, https://doi.org/10.5194/jsss-14-89-2025, 2025b. a
Huff, M.: Review Paper: Residual Stresses in Deposited Thin-Film Material Layers for Micro- and Nano-Systems Manufacturing, Micromachines, 13, 2084, https://doi.org/10.3390/mi13122084, 2022. a
Jackson, K. M.: Fracture strength, elastic modulus and Poisson's ratio of polycrystalline 3C thin-film silicon carbide found by microsample tensile testing, Sensors Actuat. A, 125, 34–40, https://doi.org/10.1016/j.sna.2004.10.008, 2005. a
Jensen, B., Bitsie, F., and de Boer, M.: Interferometric measurement for improved understanding of boundary effects in micromachined beams, in: vol. 3875 of Symposium on Micromachining and Microfabrication, SPIE, https://doi.org/10.1117/12.360480, 1999. a
Keckes, J., Bartosik, M., Daniel, R., Mitterer, C., Maier, G., Ecker, W., Vila-Comamala, J., David, C., Schoeder, S., and Burghammer, M.: X-ray nanodiffraction reveals strain and microstructure evolution in nanocrystalline thin films, Scripta Materialia, 67, 748–751, https://doi.org/10.1016/j.scriptamat.2012.07.034, 2012. a, b
Khoshnoud, F. and Silva, C. W. d.: Recent advances in MEMS sensor technology-mechanical applications, IEEE Instrum. Meas. Mag., 15, 14–24, https://doi.org/10.1109/MIM.2012.6174574, 2012. a
Klein, C. A. and Cardinale, G. F.: Young's modulus and Poisson's ratio of CVD diamond, Diamond Relat. Mater., 2, 918–923, https://doi.org/10.1016/0925-9635(93)90250-6, 1993. a
Kurmendra and Kumar, R.: A review on RF micro-electro-mechanical-systems (MEMS) switch for radio frequency applications, Microsyst. Technol., 27, 2525–2542, https://doi.org/10.1007/s00542-020-05025-y, 2021. a
Kurth, S., Mehner, J., Shaporin, A., Michael, S., Ebert, M., Dötzel, W., and Gessner, T.: Determination of dimensional parameters in MEMS components by vibration analyses, Proc. Conf. IMAC-XXV, 1364–1371, 2007. a
Lober, T. A., Huang, J., Schmidt, M. A., and Senturia, S. D.: Characterization of the mechanisms producing bending moments in polysilicon micro-cantilever beams by interferometric deflection measurements, in: IEEE Technical Digest on Solid-State Sensor and Actuator Workshop, 92–95, https://doi.org/10.1109/SOLSEN.1988.26441, 1988. a
Masters, N., de Boer, M., Jensen, B., Baker, M., Koester, D., Muhlstein, C., and Brown, S.: Side-by-Side Comparison of Passive MEMS Strain Test Structures under Residual Compression, in: vol. STP1413-EB, ASTM International, ISBN 978-0-8031-2889-7, https://doi.org/10.1520/stp10989s, 2001. a
Mazur, A. V. and Gasik, M. M.: Thermal expansion of silicon at temperatures up to 1100 °C, J. Mater. Process. Technol., 209, 723–727, https://doi.org/10.1016/j.jmatprotec.2008.02.041, 2009. a
Meindlhumer, M., Ziegelwanger, T., Grau, J., Sternschulte, H., Sztucki, M., Steinmüller-Nethl, D., and Keckes, J.: Micromechanical properties of micro- and nanocrystalline CVD diamond thin films with gradient microstructures and stresses, J. Vacuum Sci. Technol. A, 42, https://doi.org/10.1116/6.0003235, 2024. a, b
Moll, P., Pfusterschmied, G., Schwarz, S., Stöger-Pollach, M., and Schmid, U.: Impact of alternating precursor supply and gas flow on the LPCVD growth behavior of polycrystalline 3C-SiC thin films on Si, Sensors Actuat. A, 372, 115376, https://doi.org/10.1016/j.sna.2024.115376, 2024. a, b
Moll, P., Pfusterschmied, G., Schmid, B., Schwarz, S., Artner, W., and Schmid, U.: Ultra-low CTE-mismatch of 3C-SiC-on-Si thin films for high temperature MEMS applications, Sensors Actuat. A, 384, 116262, https://doi.org/10.1016/j.sna.2025.116262, 2025. a
Osterberg, P. M. and Senturia, S. D.: M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures, J. Microelectromech. Syst., 6, 107–118, https://doi.org/10.1109/84.585788, 1997. a
Small, M. K. and Nix, W. D.: Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films, J. Mater. Res., 7, 1553–1563, https://doi.org/10.1557/JMR.1992.1553, 1992. a
Stoney, G. G. and Parsons, C. A.: The tension of metallic films deposited by electrolysis, P. Roy. Soc. Lond. A, 82, 172–175, https://doi.org/10.1098/rspa.1909.0021, 1909. a
Tada, H., Kumpel, A. E., Lathrop, R. E., Slanina, J. B., Nieva, P., Zavracky, P., Miaoulis, I. N., and Wong, P. Y.: Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures, J. Appl. Phys., 87, 4189–4193, https://doi.org/10.1063/1.373050, 2000. a
Valente, T., Bartuli, C., Sebastiani, M., and Loreto, A.: Implementation and development of the incremental hole drilling method for the measurement of residual stress in thermal spray coatings, J. Therm. Spray Technol., 14, 462–470, https://doi.org/10.1361/105996305X76432, 2005. a, b
Short summary
We present an automated, contactless method to map thin film thickness and stress across microelectromechanical systems (MEMS) wafers. Using white light interferometry on cantilevers and step profiles, we extract both mean and gradient stress with orientation sensitivity. Applied to six thin films, the approach reveals process-dependent variations, offering a reliable tool for evaluating and comparing MEMS materials and fabrication methods.
We present an automated, contactless method to map thin film thickness and stress across...
Special issue