Articles | Volume 5, issue 2
J. Sens. Sens. Syst., 5, 447–455, 2016
https://doi.org/10.5194/jsss-5-447-2016
J. Sens. Sens. Syst., 5, 447–455, 2016
https://doi.org/10.5194/jsss-5-447-2016
Regular research article
22 Dec 2016
Regular research article | 22 Dec 2016

Active magnetic levitation and 3-D position measurement for a ball viscometer

Friedrich Feichtinger et al.

Related authors

Fabrication of integrated polysilicon waveguides for mid-infrared absorption sensing
Gerald Stocker, Cristina Consani, Pooja Thakkar, Clement Fleury, Andreas Tortschanoff, Khaoula-Farah Ourak, Gerald Pühringer, Reyhaneh Jannesari, Parviz Saeidi, Elmar Aschauer, Ulf Bartl, Christoph Kovatsch, Thomas Grille, and Bernhard Jakoby
J. Sens. Sens. Syst., 11, 225–231, https://doi.org/10.5194/jsss-11-225-2022,https://doi.org/10.5194/jsss-11-225-2022, 2022
Short summary
Design of a dual electrochemical quartz crystal microbalance with dissipation monitoring
Rafael Ecker, Nikolaus Doppelhammer, Bernhard Jakoby, and Erwin Konrad Reichel
J. Sens. Sens. Syst., 11, 21–28, https://doi.org/10.5194/jsss-11-21-2022,https://doi.org/10.5194/jsss-11-21-2022, 2022
Short summary
Numerical analysis of an infrared gas sensor utilizing an indium-tin-oxide-based plasmonic slot waveguide
Parviz Saeidi, Bernhard Jakoby, Gerald Pühringer, Andreas Tortschanoff, Gerald Stocker, Jasmin Spettel, Thomas Grille, and Reyhaneh Jannesari
J. Sens. Sens. Syst., 11, 15–20, https://doi.org/10.5194/jsss-11-15-2022,https://doi.org/10.5194/jsss-11-15-2022, 2022
Short summary
Driving modes and material stability of a double membrane rheometer and density sensor
B. Weiss, M. Heinisch, E. K. Reichel, and B. Jakoby
J. Sens. Sens. Syst., 2, 19–26, https://doi.org/10.5194/jsss-2-19-2013,https://doi.org/10.5194/jsss-2-19-2013, 2013

Related subject area

Measurement systems: Sensor-actuator systems
Acoustophoresis in suspensions with local and time-discrete sound fields based on the time reversal technique
Philipp Hörnlein, Sebastian Wöckel, Hendrik Arndt, and Jörg Auge
J. Sens. Sens. Syst., 11, 117–128, https://doi.org/10.5194/jsss-11-117-2022,https://doi.org/10.5194/jsss-11-117-2022, 2022
Short summary
Adjustment concept for compensating for stiffness and tilt sensitivity of a novel monolithic electromagnetic force compensation (EMFC) weighing cell
Markus Pabst, Maximilian Darnieder, René Theska, and Thomas Fröhlich
J. Sens. Sens. Syst., 11, 109–116, https://doi.org/10.5194/jsss-11-109-2022,https://doi.org/10.5194/jsss-11-109-2022, 2022
Short summary
Development and test of a highly sensitive and selective hydrogen sensor system
Pramit Sood, Jens Zosel, Michael Mertig, Wolfram Oelßner, Olaf Herrmann, and Michael Woratz
J. Sens. Sens. Syst., 9, 309–317, https://doi.org/10.5194/jsss-9-309-2020,https://doi.org/10.5194/jsss-9-309-2020, 2020
Short summary
Integrated defect sensor for the inspection of fiber-reinforced plastics using air-coupled ultrasound
Yannick Bernhardt and Marc Kreutzbruck
J. Sens. Sens. Syst., 9, 127–132, https://doi.org/10.5194/jsss-9-127-2020,https://doi.org/10.5194/jsss-9-127-2020, 2020
Short summary
A mobile nondestructive testing (NDT) system for fast detection of impact damage in fiber-reinforced plastics (FRP)
Johannes Rittmann, Markus Rahammer, Niels Holtmann, and Marc Kreutzbruck
J. Sens. Sens. Syst., 9, 43–50, https://doi.org/10.5194/jsss-9-43-2020,https://doi.org/10.5194/jsss-9-43-2020, 2020
Short summary

Cited articles

Cho, D., Kato, Y., and Spilman, D.: Sliding mode and classical controllers in magnetic levitation systems, IEEE Contr. Syst., 13, 42–48, https://doi.org/10.1109/37.184792, 1993.
Clara, S., Antlinger, H., and Jakoby, B.: An Electromagnetically Actuated Oscillating Sphere Used as a Viscosity Sensor, IEEE Sens. J., 14, 1914–1922, https://doi.org/10.1109/JSEN.2014.2304973, 2014a.
Clara, S., Antlinger, H., and Jakoby, B.: Theoretical Analysis and Simulation Studies of the Orbiting Sphere Viscometer, IEEE Sens. J., 14, 3669–3676, https://doi.org/10.1109/JSEN.2014.2330875, 2014b.
Earnshaw, S.: On the nature of the molecular forces which regulate the constitution of the luminiferous ether, Trans Camb. Phil. Soc., 7, 97–112, 1842.
Feichtinger, F.: Magnetisch gelagerte Kugel für ein Viskosimeter, Master's thesis, Johannes Kepler University, Linz, http://epub.jku.at/obvulihs/content/titleinfo/502892, 2015.
Download
Short summary
We present a new technique which can be used in devices measuring the viscosity of a liquid. To this end, a steel ball is submerged in the liquid and levitated by magnetic forces. The ball's position is measured and controlled to keep the ball in a stable levitated position. The ball is then actuated to perform a circular motion through the liquid. This motion is measured and can be used to draw conclusions about the liquid's viscosity.