Articles | Volume 7, issue 2
https://doi.org/10.5194/jsss-7-543-2018
https://doi.org/10.5194/jsss-7-543-2018
Regular research article
 | 
12 Oct 2018
Regular research article |  | 12 Oct 2018

A customized stand-alone photometric Raman sensor applicable in explosive atmospheres: a proof-of-concept study

Marcel Nachtmann, Shaun Paul Keck, Frank Braun, Hanns Simon Eckhardt, Christoph Mattolat, Norbert Gretz, Stephan Scholl, and Matthias Rädle

Related subject area

Applications: Process control
Monitoring ammonia slip from large-scale selective catalytic reduction (SCR) systems in combined heat and power generation applications with field effect gas sensors
Lida Khajavizadeh and Mike Andersson
J. Sens. Sens. Syst., 12, 235–246, https://doi.org/10.5194/jsss-12-235-2023,https://doi.org/10.5194/jsss-12-235-2023, 2023
Short summary
Development of a gas chromatography system coupled to a metal-oxide semiconductor (MOS) sensor, with compensation of the temperature effects on the column for the measurement of ethene
Maximilian Koehne, Christopher Schmidt, Satnam Singh, Andreas Grasskamp, Tilman Sauerwald, and Gina Zeh
J. Sens. Sens. Syst., 12, 215–223, https://doi.org/10.5194/jsss-12-215-2023,https://doi.org/10.5194/jsss-12-215-2023, 2023
Short summary
In situ monitoring of used-sand regeneration in foundries by impedance spectroscopy
Luca Bifano, Marco Weider, Alice Fischerauer, Gotthard Wolf, and Gerhard Fischerauer
J. Sens. Sens. Syst., 11, 287–298, https://doi.org/10.5194/jsss-11-287-2022,https://doi.org/10.5194/jsss-11-287-2022, 2022
Short summary
Double entry method for the verification of data a chromatography data system receives
David Thomas Marehn, Detlef Wilhelm, Heike Pospisil, and Roberto Pizzoferrato
J. Sens. Sens. Syst., 8, 207–214, https://doi.org/10.5194/jsss-8-207-2019,https://doi.org/10.5194/jsss-8-207-2019, 2019
Short summary
Annular arrays for novel ultrasonic measurement techniques
Mario Wolf, Elfgard Kühnicke, Sebastian Kümmritz, and Michael Lenz
J. Sens. Sens. Syst., 5, 373–380, https://doi.org/10.5194/jsss-5-373-2016,https://doi.org/10.5194/jsss-5-373-2016, 2016
Short summary

Cited articles

Arcis, H., Ferguson, J. P., Applegarth, L. M. S. G. A., Zimmerman, G. H., and Tremaine, P. R.: Ionization of boric acid in water from 298 K to 623 K by AC conductivity and Raman spectroscopy, J. Chem. Thermodynamics, 106, 187–198, https://doi.org/10.1016/j.jct.2016.11.007, 2017. 
Berenblut, B. J. and Dawson, P.: The modificaction of a Cary model 81 Raman spectrophotometer for use with a laser, J. Phys. E Sci. Instrum., 5, 4, https://doi.org/10.1088/0022-3735/5/4/019, 1972. 
Braun, F., Schwolow, S., Seltenreich, J., Kockmann, N., Röder, T., Gretz, N., and Rädle, M.: Highly Sensitive Raman Spectroscopy with Low Laser Power for Fast In-Line Reaction and Multiphase Flow Monitoring, Anal. Chem., 88, 9368–9374, https://doi.org/10.1021/acs.analchem.6b01509, 2016. 
Bumbrah, G. S. and Sharma, R. M.: Raman-Spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse, Egypt. J. For. Sci., 6, 209–2015, https://doi.org/10.1016/j.ejfs.2015.06.001, 2016. 
Download
Short summary
This paper presents an explosion-proof two-channel Raman photometer designed for chemical process monitoring in hazardous explosive atmospheres. Due to its design, alignment of components is simplified and economic in comparison to spectrometer systems. The described embedded sensor is ideally suited as a process analytical technology (PAT) tool for applications in environments with limitations on power input.