Articles | Volume 9, issue 2
https://doi.org/10.5194/jsss-9-319-2020
https://doi.org/10.5194/jsss-9-319-2020
Regular research article
 | 
08 Oct 2020
Regular research article |  | 08 Oct 2020

A tactile sensor based on magneto-sensitive elastomer to determine the position of an indentation

Simon Gast and Klaus Zimmermann

Related subject area

Sensor principles and phenomena: Mechanical and inertial sensors
Telemetric angle and position sensing using millimeter-wave metamaterial and a frequency-modulated continuous-wave (FMCW) chip
Alexander Schossmann, Michael Töfferl, Christoph Schmidt, and Alexander Bergmann
J. Sens. Sens. Syst., 13, 31–39, https://doi.org/10.5194/jsss-13-31-2024,https://doi.org/10.5194/jsss-13-31-2024, 2024
Short summary
Measurement uncertainty analysis of a measurement flexure hinge in a torque standard machine
Kai Geva, Holger Kahmann, Christian Schlegel, and Rolf Kumme
J. Sens. Sens. Syst., 11, 201–209, https://doi.org/10.5194/jsss-11-201-2022,https://doi.org/10.5194/jsss-11-201-2022, 2022
Short summary
Creep adjustment of strain gauges based on granular NiCr-carbon thin films
Maximilian Mathis, Dennis Vollberg, Matthäus Langosch, Dirk Göttel, Angela Lellig, and Günter Schultes
J. Sens. Sens. Syst., 10, 53–61, https://doi.org/10.5194/jsss-10-53-2021,https://doi.org/10.5194/jsss-10-53-2021, 2021
Short summary
Novel method to reduce the transverse sensitivity of granular thin film strain gauges by modification of strain transfer
Maximilian Mathis, Dennis Vollberg, Matthäus Langosch, Dirk Göttel, Angela Lellig, and Günter Schultes
J. Sens. Sens. Syst., 9, 219–226, https://doi.org/10.5194/jsss-9-219-2020,https://doi.org/10.5194/jsss-9-219-2020, 2020
Short summary
Multi-parameter sensing using thickness shear mode (TSM) resonators – a feasibility analysis
Manfred Weihnacht
J. Sens. Sens. Syst., 8, 133–147, https://doi.org/10.5194/jsss-8-133-2019,https://doi.org/10.5194/jsss-8-133-2019, 2019
Short summary

Cited articles

Boie, R. A.: Capacitive impedance readout tactile image sensor, Proceedings IEEE International Conference on Robotics and Automation, 13–15 March 1984, Atlanta, GA, USA, 370–378, 1984.  a
Custy, E. J.: Apparatus and method for incorporating tactile control and tactile feedback into a human-machine interface, US patent 7,245,292 B1, 2007. a
De Maria, G., Natale, C., and Pirozzi, S.: Force/tactile sensor for robotic applications, Sensor. Actuat. A-Phys., 175, 60–72, 2012. a
Drimus, A., Kootstra, G., Bilberg, A., and Kragic, D.: Design of a flexible tactile sensor for classification of rigid and deformable objects, Robot. Auton. Syst., 62, 3–15, 2012. a
Gal, O.: Ellipse fit function from point sets, MATLAB Central File Exchange, available at: https://de.mathworks.com/matlabcentral/fileexchange/3215-fit_ellipse (last access: 23 September 2020), 2003. a
Download
Short summary
In this paper, we present a tactile sensor based on the interaction of coils with a magnetic elastomer. The first experimental approach is sampling the sensor with indentations of constant depth at different positions. A mathematical model is used to reproduce the data. Afterwards, this model is applied to random indentations at the same depth. As a result, we provide conceptual proof for position determination in one direction as a basis for a refined sensor design and further model approaches.