Articles | Volume 9, issue 1
https://doi.org/10.5194/jsss-9-99-2020
https://doi.org/10.5194/jsss-9-99-2020
Regular research article
 | 
05 Mar 2020
Regular research article |  | 05 Mar 2020

Development of a rotating-coil scanner for superconducting accelerator magnets

Piotr Rogacki, Lucio Fiscarelli, Stephan Russenschuck, and Kay Hameyer

Related subject area

Sensor principles and phenomena: Magnetic sensors
Analysis of thermal-offset drift of a high-resolution current probe using a planar Hall resistance sensor
NamYoung Lee, Jaesoo Kim, and DaeSung Lee
J. Sens. Sens. Syst., 12, 225–234, https://doi.org/10.5194/jsss-12-225-2023,https://doi.org/10.5194/jsss-12-225-2023, 2023
Short summary
Energy analysis of a wireless sensor node powered by a Wiegand sensor
Jonas Wiegner, Hanno Volker, Fabian Mainz, Andreas Backes, Michael Loeken, and Felix Huening
J. Sens. Sens. Syst., 12, 85–92, https://doi.org/10.5194/jsss-12-85-2023,https://doi.org/10.5194/jsss-12-85-2023, 2023
Short summary
Three-dimensional coil system for the generation of traceable magnetic vector fields
Nicolas Rott, Joachim Lüdke, Rainer Ketzler, Martin Albrecht, and Franziska Weickert
J. Sens. Sens. Syst., 11, 211–218, https://doi.org/10.5194/jsss-11-211-2022,https://doi.org/10.5194/jsss-11-211-2022, 2022
Short summary
Traceably calibrated scanning Hall probe microscopy at room temperature
Manuela Gerken, Aurélie Solignac, Davood Momeni Pakdehi, Alessandra Manzin, Thomas Weimann, Klaus Pierz, Sibylle Sievers, and Hans Werner Schumacher
J. Sens. Sens. Syst., 9, 391–399, https://doi.org/10.5194/jsss-9-391-2020,https://doi.org/10.5194/jsss-9-391-2020, 2020
Short summary
Homogenous nuclear magnetic resonance probe using the space harmonics suppression method
Pauline de Pellegars, Liu Pan, Rahima Sidi-Boulenouar, Eric Nativel, Michel Zanca, Eric Alibert, Sébastien Rousset, Maida Cardoso, Jean-Luc Verdeil, Nadia Bertin, Christophe Goze-Bac, Julien Muller, Rémy Schimpf, and Christophe Coillot
J. Sens. Sens. Syst., 9, 117–125, https://doi.org/10.5194/jsss-9-117-2020,https://doi.org/10.5194/jsss-9-117-2020, 2020
Short summary

Cited articles

Apollinari, G., Béjar Alonso, I., Brüning, O., Fessia, P., Lamont, M., Rossi, L., and Tavian, L.: CERN Yellow Reports: Monographs, Vol 4 (2017): High-Luminosity Large Hadron Collider (HL-LHC) Technical Design Report V. 0.1, https://doi.org/10.23731/CYRM-2017-004, 2017. a, b
Arpaia, P., Caiafa, G., and Russenschuck, S.: A Rotating-Coil Magnetometer for Scanning Transversal Field Harmonics in Accelerator Magnets, Sci. Rep., 9, 1491, https://doi.org/10.1038/s41598-018-37371-3, 2019. a
Bottura, L., Buzio, M., Pauletta, S., and Smirnov, N.: Measurement of magnetic axis in accelerator magnets: critical comparison of methods and instruments, in: Proceedings of the 23rd IEEE Instrumentation and Measurement Technology Conference, 2006, IMTC 2006, IEEE Operations Center, Sorrento, Italy, 24–27 April 2006, 765–770, https://doi.org/10.1109/IMTC.2006.328154, 2006. a
Buzio, M.: Fabrication and calibration of search coils, in: CAS – CERN Accelerator School: Specialised course on Magnets, edited by: Brandt, D., CERN, 387–421, https://doi.org/10.5170/CERN-2010-004, 2009.  a
Davies, W. G.: The theory of the measurement of magnetic multipole fields with rotating coil magnetometers, Nucl. Instrum. Meth. A, 311, 399–436, https://doi.org/10.1016/0168-9002(92)90637-J, 1992. a
Download
Short summary
The High-Luminosity Large Hadron Collider (HL-LHC) project at CERN will require new superconducting magnets with strict requirements in terms of field quality. A new measurement system based on rotating coils has been developed to characterize them with high accuracy. The system measures the required quantities in a single run, which greatly reduces the necessary time and resources. Thanks to its versatility, it can be adapted to a variety of magnet sizes without major effort.