Articles | Volume 10, issue 1
https://doi.org/10.5194/jsss-10-93-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/jsss-10-93-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Studies on porosity in poly(N-isopropylacrylamide) hydrogels for fast-responsive piezoresistive microsensors
Daniela Franke
CORRESPONDING AUTHOR
Institute of Solid State Electronics, Technische Universität Dresden, 01062 Dresden, Germany
Gerald Gerlach
CORRESPONDING AUTHOR
Institute of Solid State Electronics, Technische Universität Dresden, 01062 Dresden, Germany
Related authors
No articles found.
Agnes Eydam, Christian Hoyer, Volkmar Norkus, Frank Ellinger, and Gerald Gerlach
J. Sens. Sens. Syst., 13, 227–236, https://doi.org/10.5194/jsss-13-227-2024, https://doi.org/10.5194/jsss-13-227-2024, 2024
Short summary
Short summary
The temperature dependence of the resonance frequency of quartz resonators can be used for thermal infrared sensors. The quartz chips must be very thin to obtain a good sensor signal. This work describes how to manufacture and package sensors with 5 µm thin chips. Different sensor layouts are ion beam etched; they influence the vibration of the resonators, which is shown by impedance measurements. The temperature coefficient of the resonance frequency is determined to be around 90 ppm K-1.
Stefan Schreiber, Nadja Steinke, and Gerald Gerlach
J. Sens. Sens. Syst., 12, 141–146, https://doi.org/10.5194/jsss-12-141-2023, https://doi.org/10.5194/jsss-12-141-2023, 2023
Short summary
Short summary
We have managed to reduce the measuring time of previously common hydrogel-based sensors from a few minutes to a few seconds. For this, the arrangement of the hydrogel in the sensor was changed so that the volume of the hydrogel could be reduced. The biggest challenge, apart from generating a very thin pattern, was to firmly bond the hydrogel to a silicon surface. This was to ensure that the resulting forces of the bimorph effect can be absorbed.
Helmut Budzier and Gerald Gerlach
J. Sens. Sens. Syst., 10, 179–184, https://doi.org/10.5194/jsss-10-179-2021, https://doi.org/10.5194/jsss-10-179-2021, 2021
Short summary
Short summary
In thermometry, the displayed temperature value of an object depends on the size of the object. This behaviour, the size-of-source effect, might be a major cause of measurement uncertainty in a thermoscene. The influence of diffraction and digitization can be described advantageously with the modulation transfer function. Especially with very small objects the displayed temperatures are too low. When imaging large objects, not only the edge areas are affected, but also the entire image.
Markus Stoehr, Gerald Gerlach, Thomas Härtling, and Stephan Schoenfelder
J. Sens. Sens. Syst., 9, 209–217, https://doi.org/10.5194/jsss-9-209-2020, https://doi.org/10.5194/jsss-9-209-2020, 2020
Short summary
Short summary
Photoelasticity is considered a useful measurement tool for non-destructive and contactless determination of mechanical stresses or strains in the production of silicon wafers. In this work, a detailed derivation for the anisotropic stress-optic law is presented, and the corresponding stress-optical parameters are measured.
Tobias Ott and Gerald Gerlach
J. Sens. Sens. Syst., 9, 79–87, https://doi.org/10.5194/jsss-9-79-2020, https://doi.org/10.5194/jsss-9-79-2020, 2020
Nikolai Gulnizkij and Gerald Gerlach
J. Sens. Sens. Syst., 9, 1–6, https://doi.org/10.5194/jsss-9-1-2020, https://doi.org/10.5194/jsss-9-1-2020, 2020
Short summary
Short summary
We describe a mechanical model based on the beam theory for the development of a beam-like sensor switch with switching hysteresis for humidity sensing. The hydrogel swelling provides the mechanical energy to deflect the partly hydrogel-covered bending beam via the bimorph effect. From the model, we calculate the deflection of a beam-like sensor switch with and without a switching hysteresis. A beam-like sensor switch was manufactured, and the switching hysteresis was successfully demonstrated.
Margarita Guenther, Falko Altenkirch, Kai Ostermann, Gerhard Rödel, Ingo Tobehn-Steinhäuser, Steffen Herbst, Stefan Görlandt, and Gerald Gerlach
J. Sens. Sens. Syst., 8, 215–222, https://doi.org/10.5194/jsss-8-215-2019, https://doi.org/10.5194/jsss-8-215-2019, 2019
Short summary
Short summary
In this work, genetically modified cells of the yeast Saccharomyces cerevisiae BY4741 were confined in a four-chamber microfluidic cell, providing an optical monitoring of the cell behaviour and their supply with the nutrients. The measurements of the time-dependent fluorescence intensity were performed with different concentrations of the drug diclofenac, and the sensitivity of yeast cells to diclofenac was demonstrated. Cell viability was monitored by simultaneous impedance recording.
Jan Erfkamp, Margarita Guenther, and Gerald Gerlach
J. Sens. Sens. Syst., 7, 219–226, https://doi.org/10.5194/jsss-7-219-2018, https://doi.org/10.5194/jsss-7-219-2018, 2018
Short summary
Short summary
We describe a low-cost sensor for the detection of ethanol in alcoholic beverages. The reversible swelling of alcohol-sensitive hydrogels depends on the ethanol concentration. The resulting swelling pressure was detected via piezoresistive sensors. We have tested the swelling properties of the hydrogel (e.g. swelling kinetics, selectivity to other alcohols). Furthermore, the first sensor set-ups were tested and the reversibility of the hydrogel-based piezoresistive sensor was demonstrated.
Christoph Kroh, Roland Wuchrer, Margarita Günther, Thomas Härtling, and Gerald Gerlach
J. Sens. Sens. Syst., 7, 51–55, https://doi.org/10.5194/jsss-7-51-2018, https://doi.org/10.5194/jsss-7-51-2018, 2018
Short summary
Short summary
The inline monitoring of parameters in aqueous liquids is facing an increasing demand in many application areas. In this paper we report on an optical monitoring of the pH value in liquids by means of a sensitive hydrogel, which can be applied in the physiological range. Our results indicate a nearly linear dependency between pH value and hydrogel swelling. Furthermore, we show an improvement of the response time by a factor of 2 in comparison to other systems exploiting this kind of hydrogel.
Ulrike Schmidt, Carola Jorsch, Margarita Guenther, and Gerald Gerlach
J. Sens. Sens. Syst., 5, 409–417, https://doi.org/10.5194/jsss-5-409-2016, https://doi.org/10.5194/jsss-5-409-2016, 2016
Julia Körner, Christopher F. Reiche, Bernd Büchner, Thomas Mühl, and Gerald Gerlach
J. Sens. Sens. Syst., 5, 245–259, https://doi.org/10.5194/jsss-5-245-2016, https://doi.org/10.5194/jsss-5-245-2016, 2016
Short summary
Short summary
The presented work gives insight into the behaviour of co-resonantly coupled oscillating cantilever beams by means of electro-mechanical analogies. An electric circuit model is analysed with various stages of complexity, and conclusions are drawn regarding the applicability of the co-resonant concept for sensors. Furthermore, this is validated by a comparison between the theoretical predictions and experimental data.
Marisa Rio, Sharanya Bola, Richard H. W. Funk, and Gerald Gerlach
J. Sens. Sens. Syst., 5, 237–243, https://doi.org/10.5194/jsss-5-237-2016, https://doi.org/10.5194/jsss-5-237-2016, 2016
Short summary
Short summary
Endogeneous electric fields (EFs) affect a wide range of cellular functions such as migration, wound healing and regeneration. Similar results were observed when external EFs are applied. To date, the phenomenon of electrotaxis has been studied only in homogeneous EF environments. Here, we report on the construction and fabrication of a microfluidic biochip as well as first results for stimulation of cells with stationary, non-homogeneous EFs.
Carola Jorsch, Ulrike Schmidt, David Ulkoski, Carmen Scholz, Margarita Guenther, and Gerald Gerlach
J. Sens. Sens. Syst., 5, 229–235, https://doi.org/10.5194/jsss-5-229-2016, https://doi.org/10.5194/jsss-5-229-2016, 2016
Agnes Eydam, Gunnar Suchaneck, and Gerald Gerlach
J. Sens. Sens. Syst., 5, 165–170, https://doi.org/10.5194/jsss-5-165-2016, https://doi.org/10.5194/jsss-5-165-2016, 2016
Short summary
Short summary
Piezoelectric devices are characterized non-destructively to ensure their functionality. The material is heated by laser diodes. The resulting temperature changes lead to a pyroelectric current. Analytical and numerical finite element models describe the temperature distribution and the current in frequency and time domain. Modelling and experimental results are compared for piezoelectric plates and integrated sensors and actuators.
M. Windisch, K.-J. Eichhorn, J. Lienig, G. Gerlach, and L. Schulze
J. Sens. Sens. Syst., 5, 39–53, https://doi.org/10.5194/jsss-5-39-2016, https://doi.org/10.5194/jsss-5-39-2016, 2016
Short summary
Short summary
Hydrogels are swellable polymers, which exhibit superior sensor properties. However, the exploitation of these properties for innovative measurement technology has been prevented by the lack of a manufacturing technique for thin hydogel films that suits industrial needs. We suggest a paradigm change from the current recipe-driven sensor manufacturing to a specification-driven one. Our contributions are optimized processes for a controllable film formation and thermal curing of the hydrogels.
A. Tempelhahn, H. Budzier, V. Krause, and G. Gerlach
J. Sens. Sens. Syst., 5, 9–16, https://doi.org/10.5194/jsss-5-9-2016, https://doi.org/10.5194/jsss-5-9-2016, 2016
Short summary
Short summary
Infrared cameras based on microbolometer focal plane arrays (FPAs) are the most widely used cameras in thermography. For acceptable measurement uncertainty values, the disturbing influences of changing ambient temperature have to be considered. We propose a TEC-less and shutter-less correction approach based on additional temperature measurements inside the IR camera. The effects on the pixel responsivity and offset voltage are considered separately.
T. Ott, M. Schossig, V. Norkus, and G. Gerlach
J. Sens. Sens. Syst., 4, 313–319, https://doi.org/10.5194/jsss-4-313-2015, https://doi.org/10.5194/jsss-4-313-2015, 2015
H. Budzier and G. Gerlach
J. Sens. Sens. Syst., 4, 187–197, https://doi.org/10.5194/jsss-4-187-2015, https://doi.org/10.5194/jsss-4-187-2015, 2015
U. Marschner, G. Gerlach, E. Starke, and A. Lenk
J. Sens. Sens. Syst., 3, 187–211, https://doi.org/10.5194/jsss-3-187-2014, https://doi.org/10.5194/jsss-3-187-2014, 2014
Related subject area
Sensor principles and phenomena: Chemical and biochemical sensors
Development of electrochemical sensors based on silver nanoparticles electrodeposited on gold screen-printed electrodes: application to nitrate trace analysis in water
Chemical hydrogel sensors based on the bimorph effect with short response time
Design of a dual electrochemical quartz crystal microbalance with dissipation monitoring
Surface plasmon assisted toxic chemical NO2 gas sensor by Au ∕ ZnO functional thin films
Ceramic multilayer technology as a platform for miniaturized sensor arrays for water analysis
Glass electrode half-cells for measuring unified pH in ethanol–water mixtures
Cyclic and square-wave voltammetry for selective simultaneous NO and O2 gas detection by means of solid electrolyte sensors
Multi-gas sensor to detect simultaneously nitrogen oxides and oxygen
Influence of Pt paste and the firing temperature of screen-printed electrodes on the NO detection by pulsed polarization
Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation – sensitivity and selectivity
Determination of the mixing ratio of a flowing gas mixture with self-actuated microcantilevers
Enabling a new method of dynamic field-effect gas sensor operation through lithium-doped tungsten oxide
Optical and impedimetric study of genetically modified cells for diclofenac sensing
Novel radio-frequency-based gas sensor with integrated heater
Highly sensitive coulometric titration of oxygen for the characterization of solid materials at elevated temperatures
Trace determination of cadmium content in Malaysian herbs using graphene–ionic liquid-modified screen-printed carbon electrodes
Novel method for the detection of short trace gas pulses with metal oxide semiconductor gas sensors
A portable sensor system for bacterial concentration monitoring in metalworking fluids
Thin-film SnO2 and ZnO detectors of hydrogen peroxide vapors
Combined resistive and thermoelectric oxygen sensor with almost temperature-independent characteristics
Hydrogel-based piezoresistive sensor for the detection of ethanol
High-resolution ultrasonic spectroscopy
Design and evaluation of split-ring resonators for aptamer-based biosensors
Nanocomposite sensors of propylene glycol, dimethylformamide and formaldehyde vapors
Simulation of a thermoelectric gas sensor that determines hydrocarbon concentrations in exhausts and the light-off temperature of catalyst materials
Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance
Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review
A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres
H2S dosimeter with controllable percolation threshold based on semi-conducting copper oxide thin films
The concept of thin film bulk acoustic resonators as selective CO2 gas sensors
Biochemical piezoresistive sensors based on hydrogels for biotechnology and medical applications
Highly selective solid electrolyte sensor for the analysis of gaseous mixtures
Gas sensors based on plasma-electrochemically oxidized titanium foils
First steps to develop a sensor for a Tian–Calvet calorimeter with increased sensitivity
Selective detection of naphthalene with nanostructured WO3 gas sensors prepared by pulsed laser deposition
Flexible free-standing SU-8 microfluidic impedance spectroscopy sensor for 3-D molded interconnect devices application
Paradigm change in hydrogel sensor manufacturing: from recipe-driven to specification-driven process optimization
Platform to develop exhaust gas sensors manufactured by glass-solder-supported joining of sintered yttria-stabilized zirconia
Influence of operation temperature variations on NO measurements in low concentrations when applying the pulsed polarization technique to thimble-type lambda probes
Self-sufficient sensor for oxygen detection in packaging via radio-frequency identification
Influence of the substrate on the overall sensor impedance of planar H2 sensors involving TiO2–SnO2 interfaces
Defects and gas sensing properties of carbon nanotube-based devices
Development of a capacitive chemical sensor based on Co(II)-phthalocyanine acrylate-polymer/HfO2/SiO2/Si for detection of perchlorate
Room temperature carbon nanotube based sensor for carbon monoxide detection
Compensation for the influence of temperature and humidity on oxygen diffusion in a reactive polymer matrix
Devices based on series-connected Schottky junctions and β-Ga2O3/SiC heterojunctions characterized as hydrogen sensors
A simple method to recover the graphene-based chemi-resistor signal
Electrochemical analysis of water and suds by impedance spectroscopy and cyclic voltammetry
Overview on conductometric solid-state gas dosimeters
Gas identification based on bias induced hysteresis of a gas-sensitive SiC field effect transistor
Najib Ben Messaoud, Marília Barreiros dos Santos, Begoña Espiña, and Raquel Barbosa Queirós
J. Sens. Sens. Syst., 13, 135–145, https://doi.org/10.5194/jsss-13-135-2024, https://doi.org/10.5194/jsss-13-135-2024, 2024
Short summary
Short summary
High levels of nitrate can cause negative effects on aquatic plants, fishes and human health. A simple, reusable and sensitive electrochemical sensor based on silver nanoparticles with a modified gold screen-printed electrode has been developed for the detection of nitrate in water. The sensor exhibited good performances such as high sensitivity, reproducibility, repeatability and selectivity. The proposed approach was successfully used to determine nitrate in freshwater.
Stefan Schreiber, Nadja Steinke, and Gerald Gerlach
J. Sens. Sens. Syst., 12, 141–146, https://doi.org/10.5194/jsss-12-141-2023, https://doi.org/10.5194/jsss-12-141-2023, 2023
Short summary
Short summary
We have managed to reduce the measuring time of previously common hydrogel-based sensors from a few minutes to a few seconds. For this, the arrangement of the hydrogel in the sensor was changed so that the volume of the hydrogel could be reduced. The biggest challenge, apart from generating a very thin pattern, was to firmly bond the hydrogel to a silicon surface. This was to ensure that the resulting forces of the bimorph effect can be absorbed.
Rafael Ecker, Nikolaus Doppelhammer, Bernhard Jakoby, and Erwin Konrad Reichel
J. Sens. Sens. Syst., 11, 21–28, https://doi.org/10.5194/jsss-11-21-2022, https://doi.org/10.5194/jsss-11-21-2022, 2022
Short summary
Short summary
A setup for the characterization of liquids with the perspective of monitoring crystallization processes is presented. The novelty of this setup is the realization of viscosity and conductivity measurements using two quartz crystal microbalances. Additionally, there is the possibility to apply an electric field through the sample, enabling the manipulation of charged particles. The results show that the measured values are in reasonable agreement with values from the literature or standards.
Ravinder Gaur, Himanshu Mohan Padhy, and Manikandan Elayaperumal
J. Sens. Sens. Syst., 10, 163–169, https://doi.org/10.5194/jsss-10-163-2021, https://doi.org/10.5194/jsss-10-163-2021, 2021
Short summary
Short summary
We propose a surface plasmon resonance (SPR) sensor based on a ZnO / Au hybrid thin-film material structure and experimentally investigate its sensitivity improvement. The Kretschmann-based SPR sensor utilizes ZnO thin films and nanostructures for performance enhancement. The advancement in SPR technology relies on a low-cost, high-sensitivity, and high-selectivity sensor. Metal oxide (MO) has been incorporated into the SPR sensor to be used for detection of biological and chemical compounds.
Claudia Feller and Uwe Partsch
J. Sens. Sens. Syst., 10, 83–91, https://doi.org/10.5194/jsss-10-83-2021, https://doi.org/10.5194/jsss-10-83-2021, 2021
Short summary
Short summary
Ion-selective electrodes have been proven useful in water analysis. They are usually used as single-rod measuring chains in different designs, which are manufactured using precision mechanical manufacturing and assembling technologies. The paper describes a microsystem technology approach for the fabrication of miniaturized electrochemical sensors. Design, manufacture, and performance of the novel ceramic multilayer-based sensor array are presented in the paper using various examples.
Agnes Heering, Frank Bastkowski, and Steffen Seitz
J. Sens. Sens. Syst., 9, 383–389, https://doi.org/10.5194/jsss-9-383-2020, https://doi.org/10.5194/jsss-9-383-2020, 2020
Short summary
Short summary
The new concept of a unified pH scale can be used to compare acidities of different kinds of solvents and their mixtures. The aim of the work was to investigate the robustness of the measurement method with four commercially available glass electrodes for non-aqueous media in comparison with the rather specific type of cell used so far for this measurement. The measurement results in aqueous mixtures of ethanol show good agreement.
Anastasiya Ruchets, Nils Donker, Jens Zosel, Daniela Schönauer-Kamin, Ralf Moos, Ulrich Guth, and Michael Mertig
J. Sens. Sens. Syst., 9, 355–362, https://doi.org/10.5194/jsss-9-355-2020, https://doi.org/10.5194/jsss-9-355-2020, 2020
Short summary
Short summary
A commercial solid electrolyte gas sensor of the type "Pt|YSZ|Pt, air" based on yttria-stabilized zirconia for colorimetric oxygen detection was operated in optimized dynamic electrochemical modes. Cyclic voltammetry and square-wave voltammetry were used for the detection of NO and O2 in N2 in the temperature range between 550 and 750 °C. Due to the differences of electrode kinetics of the single components it is possible to detect these redox active gases selectively and quasi-simultaneously.
Julia Herrmann, Gunter Hagen, Jaroslaw Kita, Frank Noack, Dirk Bleicker, and Ralf Moos
J. Sens. Sens. Syst., 9, 327–335, https://doi.org/10.5194/jsss-9-327-2020, https://doi.org/10.5194/jsss-9-327-2020, 2020
Short summary
Short summary
In this contribution, an inexpensive and robust impedimetric NOx sensor is presented. The impedance of a functional thick film depends selectively on the NOx concentration in the exhaust but shows a dependency on the oxygen concentration. Therefore, an additional temperature-independent resistive oxygen sensor structure was integrated on the same sensor platform. It serves not only to determine the oxygen concentration in the exhaust, but also to correct the oxygen dependency of the NOx sensor.
Nils Donker, Anastasiya Ruchets, Daniela Schönauer-Kamin, Jens Zosel, Ulrich Guth, and Ralf Moos
J. Sens. Sens. Syst., 9, 293–300, https://doi.org/10.5194/jsss-9-293-2020, https://doi.org/10.5194/jsss-9-293-2020, 2020
Short summary
Short summary
Symmetrical Pt | YSZ | Pt–NO gas sensors were produced with frit-containing and fritless Pt electrodes and fired between 950 and 1300 °C. The sensors were operated by pulsed polarization. With fritless pastes, the sensors responded significantly higher. The firing temperature affects the sensitivity only slightly. The low NO sensitivity of the frit-containing electrodes was attributed to a blocking effect at the triple-phase boundaries that inhibits the oxygen transport through the sensor.
Caroline Schultealbert, Iklim Uzun, Tobias Baur, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 283–292, https://doi.org/10.5194/jsss-9-283-2020, https://doi.org/10.5194/jsss-9-283-2020, 2020
Short summary
Short summary
We present a work on gas sensors that can for example be used for the assessment of indoor air quality. These sensors suffer from deterioration by siloxanes, so we investigated these effects by a distinct operation mode and exposition to this gas that allows us to interpret different reactions on the sensor surface. We found that all processes on the sensor surface are slowed down by this treatment and a self-compensation by the evaluation of oxygen adsorption processes is likely to be found.
Jaqueline Stauffenberg, Steve Durstewitz, Martin Hofmann, Tzvetan Ivanov, Mathias Holz, Waleed Ehrhardt, Wolf-Ulrich Riegel, Jens-Peter Zöllner, Eberhard Manske, and Ivo Rangelow
J. Sens. Sens. Syst., 9, 71–78, https://doi.org/10.5194/jsss-9-71-2020, https://doi.org/10.5194/jsss-9-71-2020, 2020
Short summary
Short summary
In this work, a self-actuated microcantilever is used as a flow sensor. Its resonance frequency, resonance amplitude and static deflection are measured. Most conventional flow sensors are often only calibrated for one type of gas and allow an analysis of gas mixtures only with increased effort. The work examines whether the volumetric flow and the mixing ratio of a binary gas mixture are possible simultaneously from these measured variables.
Marius Rodner, Manuel Bastuck, Andreas Schütze, Mike Andersson, Joni Huotari, Jarkko Puustinen, Jyrki Lappalainen, and Tilman Sauerwald
J. Sens. Sens. Syst., 8, 261–267, https://doi.org/10.5194/jsss-8-261-2019, https://doi.org/10.5194/jsss-8-261-2019, 2019
Short summary
Short summary
To fulfil today's requirements, gas sensors have to become more and more sensitive and selective. In this work, we present a novel method to significantly enhance the effect of gate bias on the response of a SiC field-effect transistor by placing a lithium-doped tungsten oxide film beneath the gate. This enhancement, compared to undoped samples, opens new perspectives for static and transient signal generation, e.g. gate bias-cycled operation, and, thus, increasing sensitivity and selectivity.
Margarita Guenther, Falko Altenkirch, Kai Ostermann, Gerhard Rödel, Ingo Tobehn-Steinhäuser, Steffen Herbst, Stefan Görlandt, and Gerald Gerlach
J. Sens. Sens. Syst., 8, 215–222, https://doi.org/10.5194/jsss-8-215-2019, https://doi.org/10.5194/jsss-8-215-2019, 2019
Short summary
Short summary
In this work, genetically modified cells of the yeast Saccharomyces cerevisiae BY4741 were confined in a four-chamber microfluidic cell, providing an optical monitoring of the cell behaviour and their supply with the nutrients. The measurements of the time-dependent fluorescence intensity were performed with different concentrations of the drug diclofenac, and the sensitivity of yeast cells to diclofenac was demonstrated. Cell viability was monitored by simultaneous impedance recording.
Stefanie Walter, Andreas Bogner, Gunter Hagen, and Ralf Moos
J. Sens. Sens. Syst., 8, 49–56, https://doi.org/10.5194/jsss-8-49-2019, https://doi.org/10.5194/jsss-8-49-2019, 2019
Short summary
Short summary
A planar resonant radio-frequency gas sensor was equipped with an integrated heater. By simulative geometry optimization it now can be operated up to 700 °C. Sensitive materials with gas-dependent dielectric properties at higher temperatures can now be used. By coating the sensor with zeolite, ammonia could be detected. Depending on the working temperature, the sensor returns either a dosimeter signal (low temperatures) or a gas-concentration-dependent radio-frequency signal (high temperatures).
Alexander Herms, Jingying Yao, Jens Zosel, Vladimir Vashook, Wolfram Oelßner, and Michael Mertig
J. Sens. Sens. Syst., 7, 621–625, https://doi.org/10.5194/jsss-7-621-2018, https://doi.org/10.5194/jsss-7-621-2018, 2018
Short summary
Short summary
For the understanding of new materials, especially oxides, oxygen exchange of such materials and its consequences for their properties are of high interest. For this purpose a new setup for oxygen solid electrolyte coulometry with electrochemical cells made of yttria-stabilized zirconia (YSZ) is presented. It could be shown that this setup enables the measurement of exchanged oxygen from the picomol up to the higher nanomol range with a precision which was not achieved so far.
Muhammad Syafiq Nordin, Yusairie Mohd, Noor Fitrah Abu Bakar, and Zainiharyati Mohd Zain
J. Sens. Sens. Syst., 7, 481–487, https://doi.org/10.5194/jsss-7-481-2018, https://doi.org/10.5194/jsss-7-481-2018, 2018
Short summary
Short summary
Cadmium is one of heavy metals that can cause serious health complications if humans are excessively exposed. This research was conducted to detect the amount of cadmium inside herbal plants using a new sensor modified with graphene and ionic liquid. The amount of cadmium inside herbs A, D, M and C were 0.0035, 0.0237, 0.0267 and 0.0251 milligrams/litre, respectively. The results showed that the herbs were safe to be consumed. The developed sensor was comparable to existing detection methods.
Tobias Baur, Caroline Schultealbert, Andreas Schütze, and Tilman Sauerwald
J. Sens. Sens. Syst., 7, 411–419, https://doi.org/10.5194/jsss-7-411-2018, https://doi.org/10.5194/jsss-7-411-2018, 2018
Short summary
Short summary
A novel method for the detection of short pulses of gas at very low concentrations is presented. Applying the method to a doped SnO2 detector, gas pulses down to a dosage of 1 ppb times seconds can be detected. The gas transport inside the detector is simulated using the finite element method (FEM) to optimize the gas transport and to keep response and recovery time as short as possible. With this approach, we have demonstrated a detection limit for ethanol below 47 fg.
Marco Grossi, Carola Parolin, Beatrice Vitali, and Bruno Riccò
J. Sens. Sens. Syst., 7, 349–357, https://doi.org/10.5194/jsss-7-349-2018, https://doi.org/10.5194/jsss-7-349-2018, 2018
Short summary
Short summary
The paper presents a portable sensor system that measures the bacterial concentration in metalworking fluids (MWFs) exploiting impedance microbiology. Good agreement has been found between the system response and that of the reference plate count technique (PCT). The proposed system allows automated bacterial concentration measurements with shorter response times than the PCT (4 to 24 h vs. 24 to 72 h) and is suitable for in-the-field MWF monitoring.
Vladimir Aroutiounian, Valeri Arakelyan, Mikayel Aleksanyan, Gohar Shahnazaryan, Petr Kacer, Pavel Picha, Jiri Kovarik, Jakub Pekarek, and Berndt Joost
J. Sens. Sens. Syst., 7, 281–288, https://doi.org/10.5194/jsss-7-281-2018, https://doi.org/10.5194/jsss-7-281-2018, 2018
Short summary
Short summary
Some results of the solid-state hydrogen peroxide vapor sensors made from semiconductor doped metal oxide nanostructured films have been presented during the international conference in Nuremberg. In this paper the extended version of our investigations of the detectors of hydrogen peroxide vapors are presented. The prepared sensors exhibit a response to very low concentration of hydrogen peroxide vapors. These detectors can be used in medicine, pharmacology, food and the textile industry.
Murat Bektas, Thomas Stöcker, Angelika Mergner, Gunter Hagen, and Ralf Moos
J. Sens. Sens. Syst., 7, 289–297, https://doi.org/10.5194/jsss-7-289-2018, https://doi.org/10.5194/jsss-7-289-2018, 2018
Short summary
Short summary
We prepared BaFe(1-x)-0.01Al0.01TaxO3-δ (BFATx) thick films with x between 0.1 and 0.4 at room temperature using the aerosol deposition method and we measured Seebeck coefficients and conductivities between 600 and 800 °C at different oxygen concentrations. Deposited on a transducer that includes a heater, equipotential layers, and electrode structures, a dual thermoelectric–resistive oxygen sensor with almost temperature-independent characteristics of both measurands was realized using BFAT30.
Jan Erfkamp, Margarita Guenther, and Gerald Gerlach
J. Sens. Sens. Syst., 7, 219–226, https://doi.org/10.5194/jsss-7-219-2018, https://doi.org/10.5194/jsss-7-219-2018, 2018
Short summary
Short summary
We describe a low-cost sensor for the detection of ethanol in alcoholic beverages. The reversible swelling of alcohol-sensitive hydrogels depends on the ethanol concentration. The resulting swelling pressure was detected via piezoresistive sensors. We have tested the swelling properties of the hydrogel (e.g. swelling kinetics, selectivity to other alcohols). Furthermore, the first sensor set-ups were tested and the reversibility of the hydrogel-based piezoresistive sensor was demonstrated.
Vitaly Buckin
J. Sens. Sens. Syst., 7, 207–217, https://doi.org/10.5194/jsss-7-207-2018, https://doi.org/10.5194/jsss-7-207-2018, 2018
Short summary
Short summary
The paper reviews the principles and applications of high-resolution ultrasonic spectroscopy in real-time, non-destructive analysis of molecular transformations, including transitions in polymers, ligand binding, self-assembly, crystallisation, gelation, phase diagrams, monitoring of chemical and biochemical reactions. High precision and useful capabilities of this technique enable its application in a broad range of systems, where other methods often fail or have high analytical cost.
Tobias Reinecke, Johanna-Gabriela Walter, Tim Kobelt, André Ahrens, Thomas Scheper, and Stefan Zimmermann
J. Sens. Sens. Syst., 7, 101–111, https://doi.org/10.5194/jsss-7-101-2018, https://doi.org/10.5194/jsss-7-101-2018, 2018
Short summary
Short summary
A systematic investigation of a split-ring resonator for application as a biosensor is presented. The parameters responsible for the sensitivity of the setup were determined using a new approach to determine the resonance frequency depending on the relative permittivity of the sample. Based on these parameters, the resonator structure was optimized. Subsequently, a split-ring resonator was functionalized with aptamers and a selective detection of CRP could be shown.
Zaven Adamyan, Artak Sayunts, Vladimir Aroutiounian, Emma Khachaturyan, Martin Vrnata, Přemysl Fitl, and Jan Vlček
J. Sens. Sens. Syst., 7, 31–41, https://doi.org/10.5194/jsss-7-31-2018, https://doi.org/10.5194/jsss-7-31-2018, 2018
Short summary
Short summary
In this paper, we have investigated ruthenated MWCNTs/SnO2 thick-film nanocomposite sensors in the presence of propylene glycol (PG), dimethylformamide (DMF) and formaldehyde (FA) vapors in the air. The minimal PG, DMF and FA gas concentrations at which the perceptible signal is registered are 13, 5 and 115 ppm, respectively. The optimal results are shown at 200 °C operating temperature. Dependence of the response on gas concentration is linear in all cases.
Thomas Ritter, Sven Wiegärtner, Gunter Hagen, and Ralf Moos
J. Sens. Sens. Syst., 6, 395–405, https://doi.org/10.5194/jsss-6-395-2017, https://doi.org/10.5194/jsss-6-395-2017, 2017
Short summary
Short summary
A planar thermoelectric gas sensor is modeled. By coupling all influences (fluid flow, gas diffusion, heat transfer, chemical reactions, and electrical properties) a model was set up that mirrors the sensor behavior precisely, as the comparison with experimental data shows. The coupling of 3-D and 1-D geometry enables to calculate the temperature distribution, fluid flow, and the gas concentration distribution in the 3-D model, while the chemical reactions are very accurately calculated in 1-D.
Erik Bunert, Ansgar T. Kirk, Jens Oermann, and Stefan Zimmermann
J. Sens. Sens. Syst., 6, 381–387, https://doi.org/10.5194/jsss-6-381-2017, https://doi.org/10.5194/jsss-6-381-2017, 2017
Short summary
Short summary
Electron capture detectors (ECDs) are widely used for the detection of electron affine substances such as pesticides or chlorofluorocarbons. In this work we present a new non-radioactive ECD and investigate the analytical performance depending on the operating parameters. We achieved limits of detection for 1,1,2-trichloroethane and sevoflurane, which are comparable to radioactive ECDs. Furthermore, a pulsed collector voltage mode was implemented, leading to an extended linear range.
Marco Grossi and Bruno Riccò
J. Sens. Sens. Syst., 6, 303–325, https://doi.org/10.5194/jsss-6-303-2017, https://doi.org/10.5194/jsss-6-303-2017, 2017
Short summary
Short summary
Electrical impedance spectroscopy, in which a sine-wave test voltage or current is applied to the sample under test to measure its impedance over a suitable frequency range, is a powerful technique to investigate the electrical properties of a large variety of materials. This paper presents an updated review of EIS main applications such as measure of bacterial concentration, analysis of human body composition and characterization of food products, as well as other non-biological applications.
Masoud Negahdary, Mahnaz Jafarzadeh, Roya Rahimzadeh, Ghasem Rahimi, and Hamideh Dehghani
J. Sens. Sens. Syst., 6, 259–267, https://doi.org/10.5194/jsss-6-259-2017, https://doi.org/10.5194/jsss-6-259-2017, 2017
Christoph Seitz, Giuliana Beck, Jörg Hennemann, Christian Kandzia, Karl P. Hering, Angelika Polity, Peter J. Klar, Andrej Paul, Thorsten Wagner, Stefanie Russ, and Bernd M. Smarsly
J. Sens. Sens. Syst., 6, 163–170, https://doi.org/10.5194/jsss-6-163-2017, https://doi.org/10.5194/jsss-6-163-2017, 2017
Romy Hoffmann, Matthias Schreiter, and Johannes Heitmann
J. Sens. Sens. Syst., 6, 87–96, https://doi.org/10.5194/jsss-6-87-2017, https://doi.org/10.5194/jsss-6-87-2017, 2017
Short summary
Short summary
Carbon dioxide is a main greenhouse gas and a gas that well-represents air quality. Therefore, it is important to monitor the CO2 concentration in air. Creating an affordable and reliable CO2 sensor is the purpose of this paper. Using a mass-sensitive acoustic sensor (FBAR) we can detect increasing CO2 concentration by a mass increase on the sensor surface. As humidity changes often interfere with these signals the selection of CO2 over humidity changes is another topic addressed in this paper.
Ulrike Schmidt, Carola Jorsch, Margarita Guenther, and Gerald Gerlach
J. Sens. Sens. Syst., 5, 409–417, https://doi.org/10.5194/jsss-5-409-2016, https://doi.org/10.5194/jsss-5-409-2016, 2016
Matthias Schelter, Jens Zosel, Wolfram Oelßner, Ulrich Guth, and Michael Mertig
J. Sens. Sens. Syst., 5, 319–324, https://doi.org/10.5194/jsss-5-319-2016, https://doi.org/10.5194/jsss-5-319-2016, 2016
Mhamed El Achhab and Klaus Schierbaum
J. Sens. Sens. Syst., 5, 273–281, https://doi.org/10.5194/jsss-5-273-2016, https://doi.org/10.5194/jsss-5-273-2016, 2016
Short summary
Short summary
We have developed a preparation technique to form graphite/TiO2/Ti and platinum-graphite/TiO2/Ti solid-state sensors based on plasma electrolytic oxidation (PEO) of titanium foils, whereby a porous titanium oxide layer is formed with well-defined phase composition and a reproducible microstructure. A printing method is used to deposit graphite or catalytically active graphite-platinum electrodes. Our design enables the application of many different detection principles such as calorimetry.
Franz Schubert, Michael Gollner, Jaroslaw Kita, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 5, 205–212, https://doi.org/10.5194/jsss-5-205-2016, https://doi.org/10.5194/jsss-5-205-2016, 2016
Short summary
Short summary
Initial steps to apply a new ceramic multi-layer sensor for a Tian–Calvet calorimeter are shown. The FEM-developed sensor consists of stacked ceramic discs and insulation rings. The functionality of the sensor disc was proven up to 600 °C and the entire stack was tested at room temperature. The resolution was 5 µW and the sensitivity was 8.5 µV mW−1. The new sensor shows similar specifications as commercial devices and presents a good starting point for future high temperature applications.
Martin Leidinger, Joni Huotari, Tilman Sauerwald, Jyrki Lappalainen, and Andreas Schütze
J. Sens. Sens. Syst., 5, 147–156, https://doi.org/10.5194/jsss-5-147-2016, https://doi.org/10.5194/jsss-5-147-2016, 2016
Short summary
Short summary
For the application of indoor air quality monitoring, two types of tungsten oxide gas sensor layers were prepared via pulsed laser deposition. Analysis of the structure of the produced layers showed that they consist of nanoparticles and agglomerates of nanoparticles. The sensors showed significant sensitivity and selectivity towards naphthalene in the ppb concentration range. The results were achieved using temperature cycled operation of the sensors and pattern recognition signal treatment.
Marc-Peter Schmidt, Aleksandr Oseev, Christian Engel, Andreas Brose, Bertram Schmidt, and Sören Hirsch
J. Sens. Sens. Syst., 5, 55–61, https://doi.org/10.5194/jsss-5-55-2016, https://doi.org/10.5194/jsss-5-55-2016, 2016
Short summary
Short summary
The article reports about the development of novel microfluidic sensors that are directly attachable on 3-D polymers. An ability to integrate electrical and fluidic parts into the 3-D platform brings the sensors to a new level of miniaturization. The sensor system is made of a flexible polymer featuring a system of metal electrodes and a rigid polymer carrier with all external macroconnections. To the concentration of ethanol in DI water the sensor system showed the desired sensitivity.
M. Windisch, K.-J. Eichhorn, J. Lienig, G. Gerlach, and L. Schulze
J. Sens. Sens. Syst., 5, 39–53, https://doi.org/10.5194/jsss-5-39-2016, https://doi.org/10.5194/jsss-5-39-2016, 2016
Short summary
Short summary
Hydrogels are swellable polymers, which exhibit superior sensor properties. However, the exploitation of these properties for innovative measurement technology has been prevented by the lack of a manufacturing technique for thin hydogel films that suits industrial needs. We suggest a paradigm change from the current recipe-driven sensor manufacturing to a specification-driven one. Our contributions are optimized processes for a controllable film formation and thermal curing of the hydrogels.
F. Schubert, S. Wollenhaupt, J. Kita, G. Hagen, and R. Moos
J. Sens. Sens. Syst., 5, 25–32, https://doi.org/10.5194/jsss-5-25-2016, https://doi.org/10.5194/jsss-5-25-2016, 2016
Short summary
Short summary
A manufacturing process for a planar binary lambda sensor is shown. By joining the heating and the sensing components via glass soldering with a joining temperature of 850 °C, a laboratory platform has been established that allows the manufacturing of two independent parts in HTCC technology with electrodes that are post-processed at lower temperatures, as is required for mixed-potential sensors. The concept has been proved by comparing the device with a commercial sensor.
S. Fischer, D. Schönauer-Kamin, R. Pohle, M. Fleischer, and R. Moos
J. Sens. Sens. Syst., 4, 321–329, https://doi.org/10.5194/jsss-4-321-2015, https://doi.org/10.5194/jsss-4-321-2015, 2015
Short summary
Short summary
Thimble-type lambda probes that are known for their robustness in harsh exhausts can also be used as an NOx sensor by applying the pulsed polarization technique. This study evaluates in detail the influence of temperature on the NO sensitivity, so that an optimum operating point can be derived. Stepwise NO concentration changes between 0 and 12.5 ppm in synthetic exhausts demonstrate the high potential of this concept.
C. Weigel, M. Schneider, J. Schmitt, M. Hoffmann, S. Kahl, and R. Jurisch
J. Sens. Sens. Syst., 4, 179–186, https://doi.org/10.5194/jsss-4-179-2015, https://doi.org/10.5194/jsss-4-179-2015, 2015
L. Ebersberger and G. Fischerauer
J. Sens. Sens. Syst., 4, 85–90, https://doi.org/10.5194/jsss-4-85-2015, https://doi.org/10.5194/jsss-4-85-2015, 2015
Short summary
Short summary
The current contribution reports on the substrate influence in multilayer metal-oxide chemical sensors. Measurements of the impedance are used to discuss the sensor performance with quartz substrates, (laboratory) glass substrates and substrates covered by silicon-dioxide insulating layers. Numerical experiments based on previous measurement results show that inexpensive glass substrates contribute up to 97% to the overall sensor responses.
S. Baldo, V. Scuderi, L. Tripodi, A. La Magna, S.G. Leonardi, N. Donato, G. Neri, S. Filice, and S. Scalese
J. Sens. Sens. Syst., 4, 25–30, https://doi.org/10.5194/jsss-4-25-2015, https://doi.org/10.5194/jsss-4-25-2015, 2015
M. Braik, C. Dridi, M. Ben Ali, M. Ali, M. Abbas, M. Zabala, J. Bausells, N. Zine, N. Jaffrezic-Renault, and A. Errachid
J. Sens. Sens. Syst., 4, 17–23, https://doi.org/10.5194/jsss-4-17-2015, https://doi.org/10.5194/jsss-4-17-2015, 2015
A. Hannon, Y. Lu, J. Li, and M. Meyyappan
J. Sens. Sens. Syst., 3, 349–354, https://doi.org/10.5194/jsss-3-349-2014, https://doi.org/10.5194/jsss-3-349-2014, 2014
P. Marek, J. J. Velasco-Veléz, T. Doll, and G. Sadowski
J. Sens. Sens. Syst., 3, 291–303, https://doi.org/10.5194/jsss-3-291-2014, https://doi.org/10.5194/jsss-3-291-2014, 2014
Short summary
Short summary
A time-monitoring oxygen sensor based on a diffusion-controlled oxygen reaction of the indicator system methylene blue (MB)/leuco methylene blue (LMB) and riboflavin was embedded in a water-loaded poly(vinyl alcohol) (PVA) matrix. It can be used in packaging, sensors, and biotechnology applications. Since the oxygen diffusion coefficient in the PVA matrix strongly depends on temperature and humidity, two different approaches were developed within this work to compensate for these two effects.
S. Nakagomi, K. Yokoyama, and Y. Kokubun
J. Sens. Sens. Syst., 3, 231–239, https://doi.org/10.5194/jsss-3-231-2014, https://doi.org/10.5194/jsss-3-231-2014, 2014
F. Fedi, F. Ricciardella, M. L. Miglietta, T. Polichetti, E. Massera, and G. Di Francia
J. Sens. Sens. Syst., 3, 241–244, https://doi.org/10.5194/jsss-3-241-2014, https://doi.org/10.5194/jsss-3-241-2014, 2014
Short summary
Short summary
We present the development of a simple and fast method for restoring exhaust graphene-based chemi-resistors used for NO2 detection. Exposing the devices repeatedly to gases or to air for more than two days, an overall worsening of the sensing signal is observed. Starting from this hypothesis and from the observation that nitrogen dioxide is soluble in water, we performed a recovery method consisting in the dipping of exhaust devices into ultrapure water at 100°C for 60 sec.
R. Gruden, A. Buchholz, and O. Kanoun
J. Sens. Sens. Syst., 3, 133–140, https://doi.org/10.5194/jsss-3-133-2014, https://doi.org/10.5194/jsss-3-133-2014, 2014
I. Marr, A. Groß, and R. Moos
J. Sens. Sens. Syst., 3, 29–46, https://doi.org/10.5194/jsss-3-29-2014, https://doi.org/10.5194/jsss-3-29-2014, 2014
M. Bastuck, C. Bur, A. Lloyd Spetz, M. Andersson, and A. Schütze
J. Sens. Sens. Syst., 3, 9–19, https://doi.org/10.5194/jsss-3-9-2014, https://doi.org/10.5194/jsss-3-9-2014, 2014
Cited articles
Dušek, K. and Patterson, D.: Transition in swollen polymer networks induced by intramolecular condensation, J. Polym Sci. Pol. Phys., 6, 1209–1216, 1968.
Erfkamp, J., Guenther, M., and Gerlach, G.: Hydrogel-based piezoresistive sensor for the detection of ethanol, J. Sens. Sens. Syst., 7, 219–226, https://doi.org/10.5194/jsss-7-219-2018, 2018.
Franke, D. and Gerlach, G.: Swelling studies of porous and nonporous semi-IPN hydrogels for sensor and actuator applications, Micromachines, 11, 425, https://doi.org/10.3390/mi11040425, 2020.
Franke, D., Binder, S., and Gerlach, G.: Performance of fast-responsive, porous crosslinked poly(N-isopropylacrylamide) in a piezoresistive microsensor, IEEE Sens. Lett., 1, 1500904, https://doi.org/10.1109/LSENS.2017.2773626, 2017.
Guenther, M. and Gerlach, G.: Hydrogels for chemical sensors, in: Hydrogel sensors and actuators, eds.: Gerlach, G. and Arndt, K.-F., Springer, Berlin, Heidelberg, Germany, 165–195, 2009.
Guenther, M., Gerlach, G., Corten, C., Kuckling, D., Müller, M., Shi, Z., Sorber, J., and Arndt, K.-F.: Application of polyelectrolytic temperature-responsive hydrogels in chemical sensors, Macromol. Symp., 254, 314–321, https://doi.org/10.1002/masy.200750846, 2007.
Hentze, H.-P. and Antonietti, M.: Template synthesis of porous organic polymers, Curr. Opin. Solid State Mater. Sci. 5, 343–353, https://doi.org/10.1016/S1359-0286(01)00008-0, 2001.
ImageJ software: https://imagej.nih.gov/ij/ (last access: 19 June 2020), 2018.
Kuckling, D., Arndt, K.-F., and Richter, A.: Temperature and pH dependent swelling behavior of poly(N-isopropylacrylamide)-copolymer and their use in flow control, Macromol. Mater. Eng., 288, 144–151, https://doi.org/10.1002/mame.200390007, 2003.
Nayak, S. and Lyon, L. A.: Soft nanotechnology with soft nanoparticles (esp. Figs. 2 and 6 and associated text passages), Angew. Chem. Int. Edit., 44, 7686–7708, https://doi.org/10.1002/anie.200501321, 2005.
Orakdogen, N. and Okay, O.: Reentrant conformation transition in poly (N,N-dimethylacrylamide) hydrogels in water-organic solvent mixtures, Polymer, 47, 561–568, https://doi.org/10.1016/j.polymer.2005.11.066, 2006.
Pavel, F. M.: Microemulsion polymerization, J. Disper. Sci. Technol., 25, 1–16, https://doi.org/10.1081/DIS-120027662, 2004.
Richter, A.: Hydrogels for actuators, in: Hydrogel sensors and actuators, eds.: Gerlach, G. and Arndt, K.-F., Springer, Berlin, Heidelberg, Germany, 221–248, 2009.
Richter, A. and Paschew, G.: Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin, Adv. Mater., 21, 979–983, https://doi.org/10.1002/adma.200802737, 2009.
Richter, A., Klatt, S., Paschew, G., and Klenke, C.: Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels, Lab Chip, 9, 613–618, https://doi.org/10.1039/b810256b, 2009.
Saito, S., Konno, M., and Inomata, H.: Volume phase transition of N-alkylacrylamide gels, in: Responsive gels: Volume transitions I, ed.: Dušek, K., Springer, Berlin, Germany, 207–232, 1993.
Schulz, V., Zschoche, S., Zhang, H. P., Voit, B., and Gerlach, G.: Macroporous smart hydrogels for fast-responsive piezoresistive chemical microsensors, Procedia Engineer., 25, 1141–1144, https://doi.org/10.1016/j.proeng.2011.12.281, 2011.
Sjöblom, J., Lindberg, R., and Friberg, S. E. : Microemulsions – phase equilibria characterization, structures, applications and chemical reactions, Adv. Colloid Interfac., 65, 125–287, 1996.
Tanaka, T.: Collapse of gels and the critical endpoint, Phys. Rev. Lett., 40, 820–823, 1978.
Tiddy, G. J. T.: Surfactant-water liquid crystal phases, Phys. Rep., 57, 1–46, 1980.
Special issue