Articles | Volume 4, issue 1
J. Sens. Sens. Syst., 4, 239–247, 2015
https://doi.org/10.5194/jsss-4-239-2015
J. Sens. Sens. Syst., 4, 239–247, 2015
https://doi.org/10.5194/jsss-4-239-2015

Regular research article 18 Jun 2015

Regular research article | 18 Jun 2015

Novel microthermal sensor principle for determining the mixture ratio of binary fluid mixtures using Föppl vortices

B. Schmitt et al.

Related authors

Influence of synchronization within a sensor network on machine learning results
Tanja Dorst, Yannick Robin, Sascha Eichstädt, Andreas Schütze, and Tizian Schneider
J. Sens. Sens. Syst., 10, 233–245, https://doi.org/10.5194/jsss-10-233-2021,https://doi.org/10.5194/jsss-10-233-2021, 2021
Short summary
Random gas mixtures for efficient gas sensor calibration
Tobias Baur, Manuel Bastuck, Caroline Schultealbert, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 411–424, https://doi.org/10.5194/jsss-9-411-2020,https://doi.org/10.5194/jsss-9-411-2020, 2020
Short summary
Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation – sensitivity and selectivity
Caroline Schultealbert, Iklim Uzun, Tobias Baur, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 283–292, https://doi.org/10.5194/jsss-9-283-2020,https://doi.org/10.5194/jsss-9-283-2020, 2020
Short summary
Enabling a new method of dynamic field-effect gas sensor operation through lithium-doped tungsten oxide
Marius Rodner, Manuel Bastuck, Andreas Schütze, Mike Andersson, Joni Huotari, Jarkko Puustinen, Jyrki Lappalainen, and Tilman Sauerwald
J. Sens. Sens. Syst., 8, 261–267, https://doi.org/10.5194/jsss-8-261-2019,https://doi.org/10.5194/jsss-8-261-2019, 2019
Short summary
Impedance model for a high-temperature ceramic humidity sensor
Henrik Lensch, Manuel Bastuck, Tobias Baur, Andreas Schütze, and Tilman Sauerwald
J. Sens. Sens. Syst., 8, 161–169, https://doi.org/10.5194/jsss-8-161-2019,https://doi.org/10.5194/jsss-8-161-2019, 2019
Short summary

Related subject area

Sensor principles and phenomena: Thermal sensors
Monitor and control test room for investigating thermal performance of panels incorporating phase-change material
Marwa Othmen, Radwen Bahri, Slaheddine Najar, and Ahmed Hannachi
J. Sens. Sens. Syst., 10, 281–288, https://doi.org/10.5194/jsss-10-281-2021,https://doi.org/10.5194/jsss-10-281-2021, 2021
Short summary
Novel thermocouples for automotive applications
Paul Gierth, Lars Rebenklau, Klaus Augsburg, Eric Bachmann, and Lars Niedermeyer
J. Sens. Sens. Syst., 7, 43–49, https://doi.org/10.5194/jsss-7-43-2018,https://doi.org/10.5194/jsss-7-43-2018, 2018
Short summary
Enhanced wavelength-selective absorber for thermal detectors based on metamaterials
Astrit Shoshi, Thomas Maier, and Hubert Brueckl
J. Sens. Sens. Syst., 5, 171–178, https://doi.org/10.5194/jsss-5-171-2016,https://doi.org/10.5194/jsss-5-171-2016, 2016
Short summary
A new low-cost hydrogen sensor build with a thermopile IR detector adapted to measure thermal conductivity
M. Liess
J. Sens. Sens. Syst., 4, 281–288, https://doi.org/10.5194/jsss-4-281-2015,https://doi.org/10.5194/jsss-4-281-2015, 2015
Short summary
Calibration of uncooled thermal infrared cameras
H. Budzier and G. Gerlach
J. Sens. Sens. Syst., 4, 187–197, https://doi.org/10.5194/jsss-4-187-2015,https://doi.org/10.5194/jsss-4-187-2015, 2015

Cited articles

Albright, P. S. and Gosting, L. J.: Dielectric Constants of the Methanol-Water System from 5 to 55°, J. Am. Chem. Soc., 68, 1061–1063, https://doi.org/10.1021/ja01210a043, 1946.
Bates, O. K., Hazzard, G., and Palmer, G.: Thermal Conductivity of Liquids, Ind. Eng. Chem. Anal. Ed., 10, 314–318, https://doi.org/10.1021/ac50122a006, 1938.
Dyer, C. K.: Fuel cells for portable applications, J. Power Sources, 106, 31–34, https://doi.org/10.1016/S0378-7753(01)01069-2, 2002.
Föppl, L.: Wirbelbewegung hinter einem Kreiszylinder, Verl. d. K. B. Akad. d. Wiss., München, 1913.
Hucho, W. H.: Aerodynamik der stumpfen Körper, 2. Auflage, Vieweg + Teubner, Springer, Wiesbaden, Germany, 2011.
Download
Short summary
A novel sensor principle for determining binary fluid mixtures of known components is presented. A bluff body is placed in the fluid channel, causing the formation of a stationary pair of vortices behind the body. The length of the vortex pair depends on the mixture’s viscosity and thus its composition. It is measured by placing a microheater in the vortex area and making use of forced convection which changes with the size of the vortices.