Articles | Volume 5, issue 1
J. Sens. Sens. Syst., 5, 17–23, 2016
https://doi.org/10.5194/jsss-5-17-2016

Special issue: Sensor/IRS2 2015

J. Sens. Sens. Syst., 5, 17–23, 2016
https://doi.org/10.5194/jsss-5-17-2016

Regular research article 20 Jan 2016

Regular research article | 20 Jan 2016

Atmospheric transmission coefficient modelling in the infrared for thermovision measurements

W. Minkina and D. Klecha

Related subject area

Applications: Environmental monitoring
A classification technique of civil objects by artificial neural networks using estimation of entropy on synthetic aperture radar images
Anton V. Kvasnov and Vyacheslav P. Shkodyrev
J. Sens. Sens. Syst., 10, 127–134, https://doi.org/10.5194/jsss-10-127-2021,https://doi.org/10.5194/jsss-10-127-2021, 2021
Short summary
Measure particulate matter by yourself: data-quality monitoring in a citizen science project
Aboubakr Benabbas, Martin Geißelbrecht, Gabriel Martin Nikol, Lukas Mahr, Daniel Nähr, Simon Steuer, Gabriele Wiesemann, Thomas Müller, Daniela Nicklas, and Thomas Wieland
J. Sens. Sens. Syst., 8, 317–328, https://doi.org/10.5194/jsss-8-317-2019,https://doi.org/10.5194/jsss-8-317-2019, 2019
An autonomous flame ionization detector for emission monitoring
Jan Förster, Winfred Kuipers, Christian Lenz, Steffen Ziesche, and Franz Bechtold
J. Sens. Sens. Syst., 8, 67–73, https://doi.org/10.5194/jsss-8-67-2019,https://doi.org/10.5194/jsss-8-67-2019, 2019
Short summary
Gas sensors for climate research
Louisa Scholz, Alvaro Ortiz Perez, Benedikt Bierer, Jürgen Wöllenstein, and Stefan Palzer
J. Sens. Sens. Syst., 7, 535–541, https://doi.org/10.5194/jsss-7-535-2018,https://doi.org/10.5194/jsss-7-535-2018, 2018
Short summary
Metal ion binding and tolerance of bacteria cells in view of sensor applications
Jonas Jung, Anja Blüher, Mathias Lakatos, and Gianaurelio Cuniberti
J. Sens. Sens. Syst., 7, 433–441, https://doi.org/10.5194/jsss-7-433-2018,https://doi.org/10.5194/jsss-7-433-2018, 2018
Short summary

Cited articles

Anderson, G. P., Kneizys, F. X., Chetwynd, J. H., Wang, J., Hoke, M. L., Rothman, L. S., Kimball L. M., McClatchey, R. A., Shettle, E. P., Clough, S. A., Gallery, W. O., Abreu, L. W., and Selby, J. E. A.: FASCODE, MODTRAN, LOWTRAN: past, present, future, Proceedings of the 18th Annual Review Conference on Atmospheric Transmission Models, Boston 6–8 June 1995, 101–120, edited by: Anderson, G. P., Picard, R. H., Chetwynd, J. H., 1995.
DeWitt, D. P.: Inferring temperature from optical radiation measurements, Proc. of SPIE, Vol. 0446, Thermosense VI (ÙOctober 1983): An Int. Conf. on Thermal Infrared Sensing for Diagnostics and Control, edited by: Burrer, G. J., 226–233, 1983.
Gaussorgues, G.: Infrared Thermography. Springer Science+Business Media, B. V., Dordrecht, 552 pp., ISBN: 978-94-010-4306-9, 1994.
IR-Book: FLIR Training Proceedings, Level II (Infrared Training Center – International, itc-i), 120 pp., 2000.
Minkina, W. and Dudzik, S.: Simulation analysis of uncertainty of infrared camera measurement and processing path, Measurement, Vol. 39, Nr. 8, 758–763, Elsevier Ltd, 2006.
Download
Short summary
The aim of this paper is to discuss different models that describe atmospheric transmission in the infrared. They were compared in order to choose the most appropriate one for certain atmospheric conditions. Universal models and different inaccuracies connected with them were analysed in this paper. There have been models analysed from the literature, and these are used in infrared cameras.
Special issue