Articles | Volume 4, issue 2
https://doi.org/10.5194/jsss-4-263-2015
Special issue:
https://doi.org/10.5194/jsss-4-263-2015
Regular research article
 | 
17 Aug 2015
Regular research article |  | 17 Aug 2015

Ammonia storage studies on H-ZSM-5 zeolites by microwave cavity perturbation: correlation of dielectric properties with ammonia storage

M. Dietrich, D. Rauch, U. Simon, A. Porch, and R. Moos

Related authors

Methods to investigate the temperature distribution of heated ceramic gas sensors for high-temperature applications
Thomas Wöhrl, Julia Herrmann, Jaroslaw Kita, Ralf Moos, and Gunter Hagen
J. Sens. Sens. Syst., 12, 205–214, https://doi.org/10.5194/jsss-12-205-2023,https://doi.org/10.5194/jsss-12-205-2023, 2023
Short summary
Gauge to simultaneously determine the electrical conductivity, the Hall constant, and the Seebeck coefficient up to 800 °C
Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 12, 69–84, https://doi.org/10.5194/jsss-12-69-2023,https://doi.org/10.5194/jsss-12-69-2023, 2023
Short summary
Miniaturized differential scanning calorimeter with an integrated mass sensing system: first steps
Johanna Distler, Thomas Wöhrl, Robin Werner, Michael Gerlach, Michael Gollner, Florian Linseis, Jaroslaw Kita, and Ralf Moos
J. Sens. Sens. Syst., 12, 9–19, https://doi.org/10.5194/jsss-12-9-2023,https://doi.org/10.5194/jsss-12-9-2023, 2023
Short summary
Novel, low-cost device to simultaneously measure the electrical conductivity and the Hall coefficient from room temperature up to 600 °C
Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 10, 71–81, https://doi.org/10.5194/jsss-10-71-2021,https://doi.org/10.5194/jsss-10-71-2021, 2021
Short summary
Cyclic and square-wave voltammetry for selective simultaneous NO and O2 gas detection by means of solid electrolyte sensors
Anastasiya Ruchets, Nils Donker, Jens Zosel, Daniela Schönauer-Kamin, Ralf Moos, Ulrich Guth, and Michael Mertig
J. Sens. Sens. Syst., 9, 355–362, https://doi.org/10.5194/jsss-9-355-2020,https://doi.org/10.5194/jsss-9-355-2020, 2020
Short summary

Related subject area

Sensor technologies: Sensor materials
Inverse procedure for measuring piezoelectric material parameters using a single multi-electrode sample
Leander Claes, Nadine Feldmann, Veronika Schulze, Lars Meihost, Henrik Kuhlmann, Benjamin Jurgelucks, Andrea Walther, and Bernd Henning
J. Sens. Sens. Syst., 12, 163–173, https://doi.org/10.5194/jsss-12-163-2023,https://doi.org/10.5194/jsss-12-163-2023, 2023
Short summary
Impact of electrode conductivity on mass sensitivity of piezoelectric resonators at high temperatures
Sebastian Schlack, Hendrik Wulfmeier, and Holger Fritze
J. Sens. Sens. Syst., 11, 299–313, https://doi.org/10.5194/jsss-11-299-2022,https://doi.org/10.5194/jsss-11-299-2022, 2022
Short summary
Improving the electrical and structural stability of highly piezoresistive nickel–carbon sensor thin films
Günter Schultes, Mario Cerino, Angela Lellig, and Marcus Koch
J. Sens. Sens. Syst., 11, 137–147, https://doi.org/10.5194/jsss-11-137-2022,https://doi.org/10.5194/jsss-11-137-2022, 2022
Short summary
Impact of particle size and morphology of cobalt oxide on the thermal response to methane examined by thermal analysis
Olena Yurchenko, Hans-Fridtjof Pernau, Laura Engel, Benedikt Bierer, Martin Jägle, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 10, 37–42, https://doi.org/10.5194/jsss-10-37-2021,https://doi.org/10.5194/jsss-10-37-2021, 2021
Short summary
Improvement of the performance of a capacitive relative pressure sensor: case of large deflections
Samia Achouch, Fakhita Regragui, and Mourad Gharbi
J. Sens. Sens. Syst., 9, 401–409, https://doi.org/10.5194/jsss-9-401-2020,https://doi.org/10.5194/jsss-9-401-2020, 2020

Cited articles

Beulertz, G., Herbst, F., Hagen, G., Fritsch, M., Gieshoff, J., and Moos, R.: Microwave Cavity Perturbation as a Tool for Laboratory In Situ Measurements of the Oxidation State of Three Way Catalysts, Top. Catal., 56, 405–409, https://doi.org/10.1007/s11244-013-9987-3, 2013.
Di Iorio, J. R., Ribeiro, F. H., Bates, S. A., Verma, A. A., Miller, J. T., and Gounder, R.: The Dynamic Nature of Brønsted Acid Sites in Cu–Zeolites During NOx Selective Catalytic Reduction: Quantification by Gas-Phase Ammonia Titration, Top. Catal., 58, 424–434, https://doi.org/10.1007/s11244-015-0387-8, 2015.
Dietrich, M., Rauch, D., Porch, A., and Moos, R.: A laboratory test setup for in situ measurements of the dielectric properties of catalyst powder samples under reaction conditions by microwave cavity perturbation: set up and initial tests, Sensors, 14, 16856–16868, https://doi.org/10.3390/s140916856, 2014.
Feulner, M., Hagen, G., Moos, R., Piontkowski, A., Müller, A., Fischerauer, G., and Brüggemann, D.: In-Operation Monitoring of the Soot Load of Diesel Particulate Filters: Initial Tests, Top. Catal., 56, 483–488, https://doi.org/10.1007/s11244-013-0002-9, 2013.
Franke, M. and Simon, U.: Proton mobility in H-ZSM5 studied by impedance spectroscopy, Solid State Ionics, 118, 311–316, https://doi.org/10.1016/S0167-2738(98)00436-6, 1999.
Download
Short summary
The effect of stored ammonia on the complex dielectric permittivity of H-ZSM-5 zeolites with varying storage site density was observed between 200 and 300 °C under reaction conditions by microwave cavity perturbation. Polarization and dielectric losses were differently affected. The sensitivity of the polarization to stored ammonia is almost independent, the sensitivity of the dielectric losses strongly dependent on the storage site density. The results can be explained by proton hopping.
Special issue