Articles | Volume 8, issue 1
https://doi.org/10.5194/jsss-8-215-2019
https://doi.org/10.5194/jsss-8-215-2019
Regular research article
 | 
21 May 2019
Regular research article |  | 21 May 2019

Optical and impedimetric study of genetically modified cells for diclofenac sensing

Margarita Guenther, Falko Altenkirch, Kai Ostermann, Gerhard Rödel, Ingo Tobehn-Steinhäuser, Steffen Herbst, Stefan Görlandt, and Gerald Gerlach

Related authors

Hydrogel-based piezoresistive sensor for the detection of ethanol
Jan Erfkamp, Margarita Guenther, and Gerald Gerlach
J. Sens. Sens. Syst., 7, 219–226, https://doi.org/10.5194/jsss-7-219-2018,https://doi.org/10.5194/jsss-7-219-2018, 2018
Short summary

Related subject area

Sensor principles and phenomena: Chemical and biochemical sensors
Development of electrochemical sensors based on silver nanoparticles electrodeposited on gold screen-printed electrodes: application to nitrate trace analysis in water
Najib Ben Messaoud, Marília Barreiros dos Santos, Begoña Espiña, and Raquel Barbosa Queirós
J. Sens. Sens. Syst., 13, 135–145, https://doi.org/10.5194/jsss-13-135-2024,https://doi.org/10.5194/jsss-13-135-2024, 2024
Short summary
Chemical hydrogel sensors based on the bimorph effect with short response time
Stefan Schreiber, Nadja Steinke, and Gerald Gerlach
J. Sens. Sens. Syst., 12, 141–146, https://doi.org/10.5194/jsss-12-141-2023,https://doi.org/10.5194/jsss-12-141-2023, 2023
Short summary
Design of a dual electrochemical quartz crystal microbalance with dissipation monitoring
Rafael Ecker, Nikolaus Doppelhammer, Bernhard Jakoby, and Erwin Konrad Reichel
J. Sens. Sens. Syst., 11, 21–28, https://doi.org/10.5194/jsss-11-21-2022,https://doi.org/10.5194/jsss-11-21-2022, 2022
Short summary
Surface plasmon assisted toxic chemical NO2 gas sensor by Au ∕ ZnO functional thin films
Ravinder Gaur, Himanshu Mohan Padhy, and Manikandan Elayaperumal
J. Sens. Sens. Syst., 10, 163–169, https://doi.org/10.5194/jsss-10-163-2021,https://doi.org/10.5194/jsss-10-163-2021, 2021
Short summary
Studies on porosity in poly(N-isopropylacrylamide) hydrogels for fast-responsive piezoresistive microsensors
Daniela Franke and Gerald Gerlach
J. Sens. Sens. Syst., 10, 93–100, https://doi.org/10.5194/jsss-10-93-2021,https://doi.org/10.5194/jsss-10-93-2021, 2021

Cited articles

Adeniran, A., Sherer, M., and Tyo, K. E. J.: Yeast-based biosensors: Design and applications, FEMS Yeast Res., 15, 1–15, 2015. 
Altintas, Z., Guerreiro, A., Piletsky S. A., and Tothill, I. E.: NanoMIP based optical sensor for pharmaceuticals monitoring, Sensor Actuat. B-Chem., 213, 305–313, https://doi.org/10.1016/j.snb.2015.02.043, 2015. 
Arroyo-López, F. N., Orli, S., Querol, A., and Barrio, E.: Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid, Int. J. Food Microbiol., 131, 120–127, https://doi.org/10.1016/j.ijfoodmicro.2009.01.035, 2009. 
Borga, O. and Borga, B.: Serum protein binding of nonsteroidal anti-inflammatory drugs: a comparative study, J. Pharmacokinet. Biop., 25, 63–77, 1997. 
Brennan, E., Futvoie, P., Cassidy, J., and Schazmann, B.: An ionic liquid-based sensor for diclofenac determination in water, Int. J. Environ. An. Ch., 97, 588–596, https://doi.org/10.1080/03067319.2017.1333607, 2017. 
Download
Short summary
In this work, genetically modified cells of the yeast Saccharomyces cerevisiae BY4741 were confined in a four-chamber microfluidic cell, providing an optical monitoring of the cell behaviour and their supply with the nutrients. The measurements of the time-dependent fluorescence intensity were performed with different concentrations of the drug diclofenac, and the sensitivity of yeast cells to diclofenac was demonstrated. Cell viability was monitored by simultaneous impedance recording.
Share