Articles | Volume 10, issue 1
J. Sens. Sens. Syst., 10, 37–42, 2021
https://doi.org/10.5194/jsss-10-37-2021

Special issue: Sensors and Measurement Science International SMSI 2020

J. Sens. Sens. Syst., 10, 37–42, 2021
https://doi.org/10.5194/jsss-10-37-2021
Regular research article
24 Feb 2021
Regular research article | 24 Feb 2021

Impact of particle size and morphology of cobalt oxide on the thermal response to methane examined by thermal analysis

Olena Yurchenko et al.

Related authors

Low-power sensor node for the detection of methane and propane
Benedikt Bierer, Dario Grgić, Olena Yurchenko, Laura Engel, Hans-Fridtjof Pernau, Martin Jägle, Leonhard Reindl, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 10, 185–191, https://doi.org/10.5194/jsss-10-185-2021,https://doi.org/10.5194/jsss-10-185-2021, 2021
Short summary

Related subject area

Sensor technologies: Sensor materials
Improving the electrical and structural stability of highly piezoresistive nickel–carbon sensor thin films
Günter Schultes, Mario Cerino, Angela Lellig, and Marcus Koch
J. Sens. Sens. Syst., 11, 137–147, https://doi.org/10.5194/jsss-11-137-2022,https://doi.org/10.5194/jsss-11-137-2022, 2022
Short summary
Improvement of the performance of a capacitive relative pressure sensor: case of large deflections
Samia Achouch, Fakhita Regragui, and Mourad Gharbi
J. Sens. Sens. Syst., 9, 401–409, https://doi.org/10.5194/jsss-9-401-2020,https://doi.org/10.5194/jsss-9-401-2020, 2020
Morphological characterization and porosity profiles of tantalum glancing-angle-deposited thin films
Tobias Ott and Gerald Gerlach
J. Sens. Sens. Syst., 9, 79–87, https://doi.org/10.5194/jsss-9-79-2020,https://doi.org/10.5194/jsss-9-79-2020, 2020
High-temperature stable piezoelectric transducers using epitaxially grown electrodes
Hendrik Wulfmeier, René Feder, Li Zhao, and Holger Fritze
J. Sens. Sens. Syst., 9, 15–26, https://doi.org/10.5194/jsss-9-15-2020,https://doi.org/10.5194/jsss-9-15-2020, 2020
Short summary
AC characteristics of low-ohmic foil shunts influenced by eddy currents in the mounting body
Mario Schönecker-Baußmann
J. Sens. Sens. Syst., 8, 329–333, https://doi.org/10.5194/jsss-8-329-2019,https://doi.org/10.5194/jsss-8-329-2019, 2019
Short summary

Cited articles

Beecroft, T., Miller, A. W., and Ross, J. R. H.: The use of differential scanning calorimetry in catalyst studies. The methanation of carbon monoxide over nickel/alumina catalysts, J. Catal., 40, 281–285, https://doi.org/10.1016/0021-9517(75)90255-9, 1975. 
Borchardt, H. J. and Daniels, F.: The Application of Differential Thermal Analysis to the Study of Reaction Kinetics, J. Am. Chem. Soc., 79, 41–46, https://doi.org/10.1021/ja01558a009, 1957. 
Burgess, D. J., Duffy, E., Etzler, F., and Hickey, A. J.: Particle size analysis: AAPS workshop report, cosponsored by the Food and Drug Administration and the United States Pharmacopeia, AAPS J., 6, 20, https://doi.org/10.1208/aapsj060320, 2004. 
Chen, J., Arandiyan, H., Gao, X., and Li, J.: Recent Advances in Catalysts for Methane Combustion, Catal. Surv. Asia, 19, 140–171, https://doi.org/10.1007/s10563-015-9191-5, 2015. 
Chen, Z., Wang, S., Liu, W., Gao, X., Gao, D., Wang, M., and Wang, S.: Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion, Appl. Catal. A, 525, 94–102, https://doi.org/10.1016/j.apcata.2016.07.009, 2016.  
Download
Short summary
Differential thermal analysis (DTA) was used to examine the effect of the particle size and morphology of Co3O4 on its thermal response under exposure to 1 % CH4. The DTA response results from the catalytic oxidation of methane. Co3O4 samples differing in particle size and morphology were produced by ball milling or were synthesized. The investigations performed with temperatures between 250 and 450 °C reveal that both particle size and shape have a considerable effect on thermal response.