Articles | Volume 3, issue 2
J. Sens. Sens. Syst., 3, 273–280, 2014
https://doi.org/10.5194/jsss-3-273-2014

Special issue: Advanced functional materials for environmental monitoring...

J. Sens. Sens. Syst., 3, 273–280, 2014
https://doi.org/10.5194/jsss-3-273-2014

Regular research article 30 Oct 2014

Regular research article | 30 Oct 2014

Catalytic and thermal characterisations of nanosized PdPt / Al2O3 for hydrogen detection

T. Mazingue et al.

Related subject area

Applications: Environmental monitoring
A classification technique of civil objects by artificial neural networks using estimation of entropy on synthetic aperture radar images
Anton V. Kvasnov and Vyacheslav P. Shkodyrev
J. Sens. Sens. Syst., 10, 127–134, https://doi.org/10.5194/jsss-10-127-2021,https://doi.org/10.5194/jsss-10-127-2021, 2021
Short summary
Measure particulate matter by yourself: data-quality monitoring in a citizen science project
Aboubakr Benabbas, Martin Geißelbrecht, Gabriel Martin Nikol, Lukas Mahr, Daniel Nähr, Simon Steuer, Gabriele Wiesemann, Thomas Müller, Daniela Nicklas, and Thomas Wieland
J. Sens. Sens. Syst., 8, 317–328, https://doi.org/10.5194/jsss-8-317-2019,https://doi.org/10.5194/jsss-8-317-2019, 2019
An autonomous flame ionization detector for emission monitoring
Jan Förster, Winfred Kuipers, Christian Lenz, Steffen Ziesche, and Franz Bechtold
J. Sens. Sens. Syst., 8, 67–73, https://doi.org/10.5194/jsss-8-67-2019,https://doi.org/10.5194/jsss-8-67-2019, 2019
Short summary
Gas sensors for climate research
Louisa Scholz, Alvaro Ortiz Perez, Benedikt Bierer, Jürgen Wöllenstein, and Stefan Palzer
J. Sens. Sens. Syst., 7, 535–541, https://doi.org/10.5194/jsss-7-535-2018,https://doi.org/10.5194/jsss-7-535-2018, 2018
Short summary
Metal ion binding and tolerance of bacteria cells in view of sensor applications
Jonas Jung, Anja Blüher, Mathias Lakatos, and Gianaurelio Cuniberti
J. Sens. Sens. Syst., 7, 433–441, https://doi.org/10.5194/jsss-7-433-2018,https://doi.org/10.5194/jsss-7-433-2018, 2018
Short summary

Cited articles

Barsan, N., Koziej, D., and Weimar, U.: Metal oxide-based gas sensor research: How to?, Sens. Actuat. B-Chem., 121 , 18–35, 2007.
Han, C.-H., Hong, D.-W., Han, S.-D., Gwak, J., and Singh, K. C.: Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED, Sens. Actuat. B-Chem., 125, 224–228, 2007.
Kroll, A. and Smorchkov, V.: Electrochemical solid-state micro-sensor for hydrogen determination, Sens. Actuat. B-Chem., 34, 462–465, 1996.
Lide, D. R.: Standard Thermodynamic Properties of Chemical Substances, CRC Handbook of Chemistry and Physics, 83rd Edn. CRC Press, Boca Raton, FL, 5-.4–5.60, 2001.
Mazingue, T., Kribich, R., Etienne, P., and Moreau, Y.: Simulations of refractive index variation in a multimode interference coupler: Application to gas sensing, Opt. Commun., 278, 312–316, 2007.
Download
Short summary
In this article, we propose detecting hydrogen (H2) traces at room temperature with nanostructured PdPt/Al2O3 catalysts. We measure the temperature rise during the exothermic oxidation of H2 by the catalyst. An appropriate formulation of about 1 mg of PdPt/Al2O3 leads to reversible thermal responses of 3°C in only 5 s. We show that this active material is a promising candidate for autonomous and reversible passive transducers for H2 sensors working at room temperature in explosive atmospheres.