Articles | Volume 5, issue 2
https://doi.org/10.5194/jsss-5-389-2016
https://doi.org/10.5194/jsss-5-389-2016
Regular research article
 | 
08 Nov 2016
Regular research article |  | 08 Nov 2016

High-accuracy current measurement with low-cost shunts by means of dynamic error correction

Patrick Weßkamp and Joachim Melbert

Related subject area

Measurement systems: Sensor signal processing and electronics
Simulation-based investigation of the metrological interface structural resolution capability of X-ray computed tomography scanners
Matthias Busch and Tino Hausotte
J. Sens. Sens. Syst., 12, 1–8, https://doi.org/10.5194/jsss-12-1-2023,https://doi.org/10.5194/jsss-12-1-2023, 2023
Short summary
Design of a CMOS memristor emulator-based, self-adaptive spiking analog-to-digital data conversion as the lowest level of a self-x hierarchy
Hamam Abd and Andreas König
J. Sens. Sens. Syst., 11, 233–262, https://doi.org/10.5194/jsss-11-233-2022,https://doi.org/10.5194/jsss-11-233-2022, 2022
Short summary
Smart in-cylinder pressure sensor for closed-loop combustion control
Dennis Vollberg, Peter Gibson, Günter Schultes, Hans-Werner Groh, and Thomas Heinze
J. Sens. Sens. Syst., 11, 1–13, https://doi.org/10.5194/jsss-11-1-2022,https://doi.org/10.5194/jsss-11-1-2022, 2022
Short summary
Efficient transient testing procedure using a novel experience replay particle swarm optimizer for THD-based robust design and optimization of self-X sensory electronics in industry 4.0
Qummar Zaman, Senan Alraho, and Andreas König
J. Sens. Sens. Syst., 10, 193–206, https://doi.org/10.5194/jsss-10-193-2021,https://doi.org/10.5194/jsss-10-193-2021, 2021
Short summary
Intelligent fault detection of electrical assemblies using hierarchical convolutional networks for supporting automatic optical inspection systems
Alida Ilse Maria Schwebig and Rainer Tutsch
J. Sens. Sens. Syst., 9, 363–374, https://doi.org/10.5194/jsss-9-363-2020,https://doi.org/10.5194/jsss-9-363-2020, 2020
Short summary

Cited articles

Bagnoli, P. E., Casarosa, C., Ciampi, M., and Dallago, E.: Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. I. Fundamentals and theory, IEEE T. Power Electr., 13, 1208–1219, https://doi.org/10.1109/63.728348, 1998.
Grundkötter, E.: Untersuchung des transienten thermischen Verhaltens von Shuntwiderständen zur Strommessung und Optimierung von Fehlerkorrekturverfahren, Masterarbeit, Ruhr-Universität Bochum, Bochum, 2016.
Lohmann, N., Weßkamp, P., Haußmann, P., Melbert, J., and Musch, T.: Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain, J. Power Sources, 273, 613–623, https://doi.org/10.1016/j.jpowsour.2014.09.132, 2015.
März, M. and Nance, P.: Thermal Modeling of Power-electronic Systems, available at: http://www.iisb.fraunhofer.de/content/dam/iisb2014/en/Documents/Research-Areas/Energy_Electronics/publications_patents_downloads/Publications/Therm_Modelling_2000_IISB.pdf (last access: 2 November 2016), 2000.
Proakis, J. G. and Manolakis, D. G.: Digital signal processing, Pearson Education, Upper Saddle River, NJ, 4th ed., 1084 pp., ISBN-10: 0-13-187374-1, 2007.
Download
Short summary
Measurement of electrical current is important for many scientific and industrial applications. Often shunt resistors are used. However, thermal effects due to self-heating and ambient temperature variation limit the achievable accuracy. In this work, a dynamic compensation method is presented which takes static and dynamic temperature drift effects into account. It significantly reduces the remaining measurement errors. The approach can also be used to improve existing measurement systems.