Articles | Volume 8, issue 1
https://doi.org/10.5194/jsss-8-49-2019
https://doi.org/10.5194/jsss-8-49-2019
Regular research article
 | 
16 Jan 2019
Regular research article |  | 16 Jan 2019

Novel radio-frequency-based gas sensor with integrated heater

Stefanie Walter, Andreas Bogner, Gunter Hagen, and Ralf Moos

Related authors

Gauge to simultaneously determine the electrical conductivity, the Hall constant, and the Seebeck coefficient up to 800 °C
Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 12, 69–84, https://doi.org/10.5194/jsss-12-69-2023,https://doi.org/10.5194/jsss-12-69-2023, 2023
Short summary
Miniaturized differential scanning calorimeter with an integrated mass sensing system: first steps
Johanna Distler, Thomas Wöhrl, Robin Werner, Michael Gerlach, Michael Gollner, Florian Linseis, Jaroslaw Kita, and Ralf Moos
J. Sens. Sens. Syst., 12, 9–19, https://doi.org/10.5194/jsss-12-9-2023,https://doi.org/10.5194/jsss-12-9-2023, 2023
Short summary
Novel, low-cost device to simultaneously measure the electrical conductivity and the Hall coefficient from room temperature up to 600 °C
Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 10, 71–81, https://doi.org/10.5194/jsss-10-71-2021,https://doi.org/10.5194/jsss-10-71-2021, 2021
Short summary
Cyclic and square-wave voltammetry for selective simultaneous NO and O2 gas detection by means of solid electrolyte sensors
Anastasiya Ruchets, Nils Donker, Jens Zosel, Daniela Schönauer-Kamin, Ralf Moos, Ulrich Guth, and Michael Mertig
J. Sens. Sens. Syst., 9, 355–362, https://doi.org/10.5194/jsss-9-355-2020,https://doi.org/10.5194/jsss-9-355-2020, 2020
Short summary
Multi-gas sensor to detect simultaneously nitrogen oxides and oxygen
Julia Herrmann, Gunter Hagen, Jaroslaw Kita, Frank Noack, Dirk Bleicker, and Ralf Moos
J. Sens. Sens. Syst., 9, 327–335, https://doi.org/10.5194/jsss-9-327-2020,https://doi.org/10.5194/jsss-9-327-2020, 2020
Short summary

Related subject area

Sensor principles and phenomena: Chemical and biochemical sensors
Design of a dual electrochemical quartz crystal microbalance with dissipation monitoring
Rafael Ecker, Nikolaus Doppelhammer, Bernhard Jakoby, and Erwin Konrad Reichel
J. Sens. Sens. Syst., 11, 21–28, https://doi.org/10.5194/jsss-11-21-2022,https://doi.org/10.5194/jsss-11-21-2022, 2022
Short summary
Surface plasmon assisted toxic chemical NO2 gas sensor by Au ∕ ZnO functional thin films
Ravinder Gaur, Himanshu Mohan Padhy, and Manikandan Elayaperumal
J. Sens. Sens. Syst., 10, 163–169, https://doi.org/10.5194/jsss-10-163-2021,https://doi.org/10.5194/jsss-10-163-2021, 2021
Short summary
Studies on porosity in poly(N-isopropylacrylamide) hydrogels for fast-responsive piezoresistive microsensors
Daniela Franke and Gerald Gerlach
J. Sens. Sens. Syst., 10, 93–100, https://doi.org/10.5194/jsss-10-93-2021,https://doi.org/10.5194/jsss-10-93-2021, 2021
Ceramic multilayer technology as a platform for miniaturized sensor arrays for water analysis
Claudia Feller and Uwe Partsch
J. Sens. Sens. Syst., 10, 83–91, https://doi.org/10.5194/jsss-10-83-2021,https://doi.org/10.5194/jsss-10-83-2021, 2021
Short summary
Glass electrode half-cells for measuring unified pH in ethanol–water mixtures
Agnes Heering, Frank Bastkowski, and Steffen Seitz
J. Sens. Sens. Syst., 9, 383–389, https://doi.org/10.5194/jsss-9-383-2020,https://doi.org/10.5194/jsss-9-383-2020, 2020
Short summary

Cited articles

Bailly, G., Harrabi, A., Rossignol, J., Stuerga, D., and Pribetich, P.: Microwave gas sensing with a microstrip interDigital capacitor: Detection of NH3 with TiO2 nanoparticles, Sens. Actuat. B, 236, 554–564, https://doi.org/10.1016/j.snb.2016.06.048, 2016a. 
Bailly, G., Rossignol, J., de Fonseca, B., Pribetich, P., and Stuerga, D.: Microwave Gas Sensing with Hematite: Shape Effect on Ammonia Detection Using Pseudocubic, Rhombohedral, and Spindlelike Particles, ACS Sens., 1, 656–662, https://doi.org/10.1021/acssensors.6b00297, 2016b. 
Barsan, N., Koziej, D., and Weimar, U.: Metal oxide-based gas sensor research: How to?, Sens. Actuat. B, 121, 18–35, https://doi.org/10.1016/j.snb.2006.09.047, 2007. 
Beulertz, G., Votsmeier, M., and Moos, R.: Effect of propene, propane, and methane on conversion and oxidation state of three-way catalysts: a microwave cavity perturbation study, Appl. Catal. B, 165, 369–377, https://doi.org/10.1016/j.apcatb.2014.09.068, 2015. 
Bogner, A., Steiner, C., Walter, S., Kita, J., Hagen, G., and Moos, R.: Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing, Sensors, 17, 2422, https://doi.org/10.3390/s17102422, 2017. 
Download
Short summary
A planar resonant radio-frequency gas sensor was equipped with an integrated heater. By simulative geometry optimization it now can be operated up to 700 °C. Sensitive materials with gas-dependent dielectric properties at higher temperatures can now be used. By coating the sensor with zeolite, ammonia could be detected. Depending on the working temperature, the sensor returns either a dosimeter signal (low temperatures) or a gas-concentration-dependent radio-frequency signal (high temperatures).