Articles | Volume 3, issue 1
J. Sens. Sens. Syst., 3, 105–111, 2014
https://doi.org/10.5194/jsss-3-105-2014

Special issue: 11th International Symposium on Measurement Technology and...

J. Sens. Sens. Syst., 3, 105–111, 2014
https://doi.org/10.5194/jsss-3-105-2014

Regular research article 14 May 2014

Regular research article | 14 May 2014

Principal component analysis for fast and automated thermographic inspection of internal structures in sandwich parts

D. Griefahn et al.

Related subject area

Measurement systems: Sensor signal processing and electronics
Smart in-cylinder pressure sensor for closed-loop combustion control
Dennis Vollberg, Peter Gibson, Günter Schultes, Hans-Werner Groh, and Thomas Heinze
J. Sens. Sens. Syst., 11, 1–13, https://doi.org/10.5194/jsss-11-1-2022,https://doi.org/10.5194/jsss-11-1-2022, 2022
Short summary
Efficient transient testing procedure using a novel experience replay particle swarm optimizer for THD-based robust design and optimization of self-X sensory electronics in industry 4.0
Qummar Zaman, Senan Alraho, and Andreas König
J. Sens. Sens. Syst., 10, 193–206, https://doi.org/10.5194/jsss-10-193-2021,https://doi.org/10.5194/jsss-10-193-2021, 2021
Short summary
Intelligent fault detection of electrical assemblies using hierarchical convolutional networks for supporting automatic optical inspection systems
Alida Ilse Maria Schwebig and Rainer Tutsch
J. Sens. Sens. Syst., 9, 363–374, https://doi.org/10.5194/jsss-9-363-2020,https://doi.org/10.5194/jsss-9-363-2020, 2020
Short summary
Measurement uncertainty analysis of field-programmable gate-array-based, real-time signal processing for ultrasound flow imaging
Richard Nauber, Lars Büttner, and Jürgen Czarske
J. Sens. Sens. Syst., 9, 227–238, https://doi.org/10.5194/jsss-9-227-2020,https://doi.org/10.5194/jsss-9-227-2020, 2020
Short summary
Compilation of training datasets for use of convolutional neural networks supporting automatic inspection processes in industry 4.0 based electronic manufacturing
Alida Ilse Maria Schwebig and Rainer Tutsch
J. Sens. Sens. Syst., 9, 167–178, https://doi.org/10.5194/jsss-9-167-2020,https://doi.org/10.5194/jsss-9-167-2020, 2020
Short summary

Cited articles

Bitzer, T.: Honeycomb technology: Materials, design, manufacturing, applications and testing, 1st Edn., Chapman & Hall, London, 1997.
Emery, W. J. and Thomson, R. E.: Data analysis methods in physical oceanography, 2. and rev. ed., 3. impr., Elsevier, Amsterdam, 2004.
Euro-Composites©, Infrastructure and production technologies – Panel Production: http://www.euro-composites.com/en/technology/Seiten/panel.html (last access: 13 March 2013), 2009.
Feuillet, V., Ibos, L., Fois, M., Dumoulin, J., and Candau, Y.: Defect detection and characterization in composite materials using square pulse thermography coupled with singular value decomposition analysis and thermal quadrupole modeling, NDT&E Int., 51, 58–67, 2012.
Ibarra-Castanedo, C., Piau, J.-M., Guilbert, S., Avdelidis, N. P., Genest, M., Bendada, A., and Maldague, X. P. V.: Comparative Study of Active Thermography Techniques for the Nondestructive Evaluation of Honeycomb Structures, Res. Nondestruct. Eval., 20, 1–31, 2009.