Articles | Volume 4, issue 1
J. Sens. Sens. Syst., 4, 111–123, 2015

Special issue: 17th ITG/GMA-Conference on Sensors and Measurement Systems...

J. Sens. Sens. Syst., 4, 111–123, 2015

Regular research article 11 Mar 2015

Regular research article | 11 Mar 2015

Partially integrated cantilever-based airborne nanoparticle detector for continuous carbon aerosol mass concentration monitoring

H. S. Wasisto et al.

Related authors

Transferable micromachined piezoresistive force sensor with integrated double-meander-spring system
Gerry Hamdana, Maik Bertke, Lutz Doering, Thomas Frank, Uwe Brand, Hutomo Suryo Wasisto, and Erwin Peiner
J. Sens. Sens. Syst., 6, 121–133,,, 2017

Related subject area

Applications: Environmental monitoring
A classification technique of civil objects by artificial neural networks using estimation of entropy on synthetic aperture radar images
Anton V. Kvasnov and Vyacheslav P. Shkodyrev
J. Sens. Sens. Syst., 10, 127–134,,, 2021
Short summary
Measure particulate matter by yourself: data-quality monitoring in a citizen science project
Aboubakr Benabbas, Martin Geißelbrecht, Gabriel Martin Nikol, Lukas Mahr, Daniel Nähr, Simon Steuer, Gabriele Wiesemann, Thomas Müller, Daniela Nicklas, and Thomas Wieland
J. Sens. Sens. Syst., 8, 317–328,,, 2019
An autonomous flame ionization detector for emission monitoring
Jan Förster, Winfred Kuipers, Christian Lenz, Steffen Ziesche, and Franz Bechtold
J. Sens. Sens. Syst., 8, 67–73,,, 2019
Short summary
Gas sensors for climate research
Louisa Scholz, Alvaro Ortiz Perez, Benedikt Bierer, Jürgen Wöllenstein, and Stefan Palzer
J. Sens. Sens. Syst., 7, 535–541,,, 2018
Short summary
Metal ion binding and tolerance of bacteria cells in view of sensor applications
Jonas Jung, Anja Blüher, Mathias Lakatos, and Gianaurelio Cuniberti
J. Sens. Sens. Syst., 7, 433–441,,, 2018
Short summary

Cited articles

Balbus, J. M., Florini, K., Denison, R. A., and Walsh, S. A.: Protecting workers and the environment: An environmental NGO's perspective on nanotechnology, J. Nanopart. Res., 9, 11–22,, 2007.
Bekker, C., Brouwer, D. H., Tielemans, E., and Pronk, A.: Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: Potential for exposure, Ann. Occup. Hyg., 57, 314–327,, 2013.
Brouwer, D.: Exposure to manufactured nanoparticles in different workplaces, Toxicology, 269, 120–127,, 2010.
Buonanno, G., Jayaratne, R. E., Morawska, L., and Stabile, L.: Metrological performances of a diffusion charger particle counter for personal monitoring, Aerosol Air Qual. Res., 14, 156–167,, 2014.
Cho, C.-H., Jaeger, R. C., and Suhling, J. C.: Characterization of the temperature dependence of the piezoresistive coefficients of silicon from −150 °C to +125 °C, IEEE Sens. J., 8, 1455–1468,, 2008.
Short summary
The performance of a low-cost partially integrated cantilever-based airborne nanoparticle (NP) detector (CANTOR-1) is evaluated in terms of its real-time measurement and robustness. The device is used for direct reading of exposure to airborne carbon engineered nanoparticles (ENPs) in indoor workplaces.