Articles | Volume 7, issue 1
J. Sens. Sens. Syst., 7, 153–160, 2018
https://doi.org/10.5194/jsss-7-153-2018

Special issue: Sensor/IRS2 2017

J. Sens. Sens. Syst., 7, 153–160, 2018
https://doi.org/10.5194/jsss-7-153-2018

Regular research article 20 Mar 2018

Regular research article | 20 Mar 2018

Determining the dimension of subsurface defects by active infrared thermography – experimental research

Slawomir Grys

Related subject area

Measurement systems: Sensor signal processing and electronics
Smart in-cylinder pressure sensor for closed-loop combustion control
Dennis Vollberg, Peter Gibson, Günter Schultes, Hans-Werner Groh, and Thomas Heinze
J. Sens. Sens. Syst., 11, 1–13, https://doi.org/10.5194/jsss-11-1-2022,https://doi.org/10.5194/jsss-11-1-2022, 2022
Short summary
Efficient transient testing procedure using a novel experience replay particle swarm optimizer for THD-based robust design and optimization of self-X sensory electronics in industry 4.0
Qummar Zaman, Senan Alraho, and Andreas König
J. Sens. Sens. Syst., 10, 193–206, https://doi.org/10.5194/jsss-10-193-2021,https://doi.org/10.5194/jsss-10-193-2021, 2021
Short summary
Intelligent fault detection of electrical assemblies using hierarchical convolutional networks for supporting automatic optical inspection systems
Alida Ilse Maria Schwebig and Rainer Tutsch
J. Sens. Sens. Syst., 9, 363–374, https://doi.org/10.5194/jsss-9-363-2020,https://doi.org/10.5194/jsss-9-363-2020, 2020
Short summary
Measurement uncertainty analysis of field-programmable gate-array-based, real-time signal processing for ultrasound flow imaging
Richard Nauber, Lars Büttner, and Jürgen Czarske
J. Sens. Sens. Syst., 9, 227–238, https://doi.org/10.5194/jsss-9-227-2020,https://doi.org/10.5194/jsss-9-227-2020, 2020
Short summary
Compilation of training datasets for use of convolutional neural networks supporting automatic inspection processes in industry 4.0 based electronic manufacturing
Alida Ilse Maria Schwebig and Rainer Tutsch
J. Sens. Sens. Syst., 9, 167–178, https://doi.org/10.5194/jsss-9-167-2020,https://doi.org/10.5194/jsss-9-167-2020, 2020
Short summary

Cited articles

Abrate, S.: Impact on composite structures, Cambridge University Press, Cambridge, 26–160, https://doi.org/10.1017/CBO9780511574504, 1998. 
Almond, D. P., Hamzah, R., Delpech, P., Peng, W., Beheshty, M. H., and Saintey M. B.: Experimental investigations of defect sizing by transient thermography, in: Quantitative Infrared Thermography, 96, Stuttgart, Germany, https://doi.org/10.21611/qirt.1996.038, 1996. 
Avdelidis, N. P., Hawtin, B. C., and Almond, D. P.: Transient thermography in the assessment of defects of aircraft composites, NDT&E Int., 36, 433–439, https://doi.org/10.1016/S0963-8695(03)00052-5, 2003. 
Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., and Jayakumar, T.: Infrared thermography for condition monitoring – A review, Infrared Phys. Techn., 60, 35–55, https://doi.org/10.1016/j.infrared.2013.03.006, 2013. 
Bishop, Ch. M.: Pattern recognition and machine learning, Springer Science+Business Media LLC, New York, USA, 2006. 
Download
Special issue