Articles | Volume 9, issue 1
https://doi.org/10.5194/jsss-9-167-2020
https://doi.org/10.5194/jsss-9-167-2020
Regular research article
 | 
01 Jul 2020
Regular research article |  | 01 Jul 2020

Compilation of training datasets for use of convolutional neural networks supporting automatic inspection processes in industry 4.0 based electronic manufacturing

Alida Ilse Maria Schwebig and Rainer Tutsch

Related authors

Intelligent fault detection of electrical assemblies using hierarchical convolutional networks for supporting automatic optical inspection systems
Alida Ilse Maria Schwebig and Rainer Tutsch
J. Sens. Sens. Syst., 9, 363–374, https://doi.org/10.5194/jsss-9-363-2020,https://doi.org/10.5194/jsss-9-363-2020, 2020
Short summary

Related subject area

Measurement systems: Sensor signal processing and electronics
Extraction of nanometer-scale displacements from noisy signals at frequencies down to 1 mHz obtained by differential laser Doppler vibrometry
Dhyan Kohlmann, Marvin Schewe, Hendrik Wulfmeier, Christian Rembe, and Holger Fritze
J. Sens. Sens. Syst., 13, 167–177, https://doi.org/10.5194/jsss-13-167-2024,https://doi.org/10.5194/jsss-13-167-2024, 2024
Short summary
Simple in-system control of microphone sensitivities in an array
Artem Ivanov
J. Sens. Sens. Syst., 13, 81–88, https://doi.org/10.5194/jsss-13-81-2024,https://doi.org/10.5194/jsss-13-81-2024, 2024
Short summary
Wireless surface acoustic wave resonator sensors: fast Fourier transform, empirical mode decomposition or wavelets for the frequency estimation in one shot?
Angel Scipioni, Pascal Rischette, and Agnès Santori
J. Sens. Sens. Syst., 12, 247–260, https://doi.org/10.5194/jsss-12-247-2023,https://doi.org/10.5194/jsss-12-247-2023, 2023
Short summary
Ultrasonic measurement setup for monitoring pre-thawing stages of food
Ruchi Jha, Walter Lang, and Reiner Jedermann
J. Sens. Sens. Syst., 12, 133–139, https://doi.org/10.5194/jsss-12-133-2023,https://doi.org/10.5194/jsss-12-133-2023, 2023
Short summary
Digital twin concepts for linking live sensor data with real-time models
Reiner Jedermann, Kunal Singh, Walter Lang, and Pramod Mahajan
J. Sens. Sens. Syst., 12, 111–121, https://doi.org/10.5194/jsss-12-111-2023,https://doi.org/10.5194/jsss-12-111-2023, 2023
Short summary

Cited articles

Berger, M.: Test- und Prüfverfahren in der Elektronikfertigung: Vom Arbeitsprinzip bis Design-for-Test-Regeln, VDE-Verlag, Berlin, 250 pp., 2012. 
Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., and Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification, Neurocomputing, 321, 321–331, https://doi.org/10.1016/j.neucom.2018.09.013, 2018. 
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, https://doi.org/10.1109/CVPR.2016.90, 2015. 
Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E.: Squeeze-and-Excitation Networks, available at: http://arxiv.org/pdf/1709.01507v4, last access: 5 September 2017. 
Huang, G., Liu, S., van der Maaten, L., and Weinberger, K. Q.: CondenseNet: An Efficient DenseNet using Learned Group Convolutions, available at: http://arxiv.org/pdf/1711.09224v2 (last access: 7 June 2018), 2018a. 
Download
Short summary
This article presents a classification concept based on deep learning as an additional optical test method for real-time visualization and analysis of electrical assemblies in the production environment. For this purpose, a neural convolutional network is used to identify the quality of the solder joint of surface-mounted chip components in the inspection images. The concept can be used to increase the detection performance of the solder joint inspection systems.