Articles | Volume 11, issue 1
https://doi.org/10.5194/jsss-11-187-2022
https://doi.org/10.5194/jsss-11-187-2022
Regular research article
 | 
29 Jun 2022
Regular research article |  | 29 Jun 2022

Near-infrared LED system to recognize road surface conditions for autonomous vehicles

Hongyi Zhang, Shéhérazade Azouigui, Rabia Sehab, and Moussa Boukhnifer

Related subject area

Sensor principles and phenomena: Optical and infrared sensors
Real-time active-gas imaging of small gas leaks
Max Bergau, Thomas Strahl, Benjamin Scherer, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 12, 61–68, https://doi.org/10.5194/jsss-12-61-2023,https://doi.org/10.5194/jsss-12-61-2023, 2023
Short summary
Non-invasive blood sugar detection by cost-effective capacitance spectroscopy
Shazzad Rassel, Md Rejvi Kaysir, Abdulrahman Aloraynan, and Dayan Ban
J. Sens. Sens. Syst., 12, 21–36, https://doi.org/10.5194/jsss-12-21-2023,https://doi.org/10.5194/jsss-12-21-2023, 2023
Short summary
Resonant photoacoustic cells for laser-based methane detection
Katrin Schmitt, Mara Sendelbach, Christian Weber, Jürgen Wöllenstein, and Thomas Strahl
J. Sens. Sens. Syst., 12, 37–44, https://doi.org/10.5194/jsss-12-37-2023,https://doi.org/10.5194/jsss-12-37-2023, 2023
Short summary
Fabrication of integrated polysilicon waveguides for mid-infrared absorption sensing
Gerald Stocker, Cristina Consani, Pooja Thakkar, Clement Fleury, Andreas Tortschanoff, Khaoula-Farah Ourak, Gerald Pühringer, Reyhaneh Jannesari, Parviz Saeidi, Elmar Aschauer, Ulf Bartl, Christoph Kovatsch, Thomas Grille, and Bernhard Jakoby
J. Sens. Sens. Syst., 11, 225–231, https://doi.org/10.5194/jsss-11-225-2022,https://doi.org/10.5194/jsss-11-225-2022, 2022
Short summary
Characterization of specular freeform surfaces from reflected ray directions using experimental ray tracing
Tobias Binkele, David Hilbig, Mahmoud Essameldin, Thomas Henning, Friedrich Fleischmann, and Walter Lang
J. Sens. Sens. Syst., 10, 261–270, https://doi.org/10.5194/jsss-10-261-2021,https://doi.org/10.5194/jsss-10-261-2021, 2021
Short summary

Cited articles

Anderson, J. M., Nidhi, K., Stanley, K. D., Sorensen, P., Samaras, C., and Oluwatola, O. A.: Autonomous vehicle technology: A guide for policymakers, Rand Corporation, https://www.rand.org/pubs/research_reports/RR443-2.html (last access: October 2021), 2014. a
Casselgren, J., Sjödahl, M., and LeBlanc, J.: Angular spectral response from covered asphalt, Appl. Optics, 46, 4277–4288, 2007. a, b, c, d, e, f, g, h, i, j, k, l, m
Casselgren, J., Sjödahl, M., and LeBlanc, J. P.: Model-based winter road classification, Int. J. Vehic. Syst. Model. Test., 7, 268–284, 2012. a, b, c, d
Casselgren, J., Rosendahl, S., Sjödahl, M., and Jonsson, P.: Road condition analysis using NIR illumination and compensating for surrounding light, Opt. Laser. Eng., 77, 175–182, 2016. a, b, c, d, e, f
Cho, Y. and Kim, J.-J.: Lifetime decrease of halogen lamps for automotive by duty cycle stress, IEEE T. Reliabil., 60, 550–556, 2011. a
Download
Short summary
In this paper, a near-infrared LED system is proposed for autonomous vehicles to distinguish between weather-induced road surface conditions (dry, wet, snow, ice, water). For the LED spectra, the influence of the LED bandwidth is investigated. To assess the performance of the system for a long detection range, experiments with large incident angles are conducted. The feasibility of this system is proved via a laboratory experiment with three near-infrared LEDs and a camera.