Articles | Volume 12, issue 1
https://doi.org/10.5194/jsss-12-147-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/jsss-12-147-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Approximate sequential Bayesian filtering to estimate 222Rn emanation from 226Ra sources using spectral time series
Division 6 – Ionizing Radiation, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
Stefan Röttger
Division 6 – Ionizing Radiation, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
Annette Röttger
Division 6 – Ionizing Radiation, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
Related authors
Scott D. Chambers, Alan D. Griffiths, Alastair G. Williams, Ot Sisoutham, Viacheslav Morosh, Stefan Röttger, Florian Mertes, and Annette Röttger
Adv. Geosci., 57, 63–80, https://doi.org/10.5194/adgeo-57-63-2022, https://doi.org/10.5194/adgeo-57-63-2022, 2022
Short summary
Short summary
There is a growing need in health and climate research for high-quality radon observations. A variety of radon monitors, with different uncertainties, operate across global networks. Better compatibility between the measurements is required. Here we describe a novel, portable two-filter radon monitor with a calibration traceable to the International System of Units, and demonstrate the transfer of a traceable calibration from this instrument to a separate monitor under field conditions.
Stefan Röttger, Annette Röttger, Claudia Grossi, Arturo Vargas, Ute Karstens, Giorgia Cinelli, Edward Chung, Dafina Kikaj, Chris Rennick, Florian Mertes, and Ileana Radulescu
Adv. Geosci., 57, 37–47, https://doi.org/10.5194/adgeo-57-37-2022, https://doi.org/10.5194/adgeo-57-37-2022, 2022
Short summary
Short summary
Radon gas is the largest source of public exposure to naturally occurring radioactivity. Radon can also be used, as a tracer to improve indirectly the estimates of greenhouse gases important for supporting successful GHG mitigation strategies.
Both climate and radiation protection research communities need improved traceable low-level atmospheric radon measurements. The EMPIR project 19ENV01 traceRadon started to provide the necessary measurement infrastructure and transfer standards.
Scott D. Chambers, Ute Karstens, Alan D. Griffiths, Stefan Röttger, Arnoud Frumau, Christopher T. Roulston, Peter Sperlich, Felix Vogel, Agnieszka Podstawczyńska, Dafina Kikaj, Maksym Gachkivskyi, Michel Ramonet, Blagoj Mitrevski, Janja Vaupotič, Xuemeng Chen, and Annette Röttger
EGUsphere, https://doi.org/10.5194/egusphere-2025-5042, https://doi.org/10.5194/egusphere-2025-5042, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The Radon Tracer Method (RTM) is a top-down approach to estimate greenhouse gas emissions. While simple in principle, incorrect use can complicate interpretation of results. Based on observations from a range of contrasting sites, this article reviews the underlying assumptions and key considerations for applying the RTM. It also introduces the concept of coupling RTM analyses with nocturnal stability classification, to reduce uncertainty of fetch estimates and improve interpretation of results.
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024, https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Short summary
This paper presents a new user-friendly version of the Atmospheric Radon MONitor (ARMON). The efficiency of the instrument is of 0.0057 s-1, obtained using different techniques at Spanish and German chambers. The total calculated uncertainty of the ARMON for hourly radon concentrations above 5 Bq m-3 is lower than 10 % (k = 1). Results confirm that the ARMON is suitable to measure low-level radon activity concentrations and to be used as a transfer standard to calibrate in situ radon monitors.
Tanita J. Ballé, Stefan Röttger, Florian Mertes, Anja Honig, Petr Kovar, Petr P. S. Otáhal, and Annette Röttger
Atmos. Meas. Tech., 17, 2055–2065, https://doi.org/10.5194/amt-17-2055-2024, https://doi.org/10.5194/amt-17-2055-2024, 2024
Short summary
Short summary
Over 50 % of naturally occurring radiation exposure is due to 222Rn (progenies), but traceability of measurements to the International System of Units (SI) is lacking. To address this, two new 222Rn sources were developed to be used as calibration standards for reference instruments. These sources were investigated by comparing their estimated calibration factors for one instrument. Despite the small differences derived, all uncertainties are well within the intended target uncertainty of 10 %.
Scott D. Chambers, Alan D. Griffiths, Alastair G. Williams, Ot Sisoutham, Viacheslav Morosh, Stefan Röttger, Florian Mertes, and Annette Röttger
Adv. Geosci., 57, 63–80, https://doi.org/10.5194/adgeo-57-63-2022, https://doi.org/10.5194/adgeo-57-63-2022, 2022
Short summary
Short summary
There is a growing need in health and climate research for high-quality radon observations. A variety of radon monitors, with different uncertainties, operate across global networks. Better compatibility between the measurements is required. Here we describe a novel, portable two-filter radon monitor with a calibration traceable to the International System of Units, and demonstrate the transfer of a traceable calibration from this instrument to a separate monitor under field conditions.
Stefan Röttger, Annette Röttger, Claudia Grossi, Arturo Vargas, Ute Karstens, Giorgia Cinelli, Edward Chung, Dafina Kikaj, Chris Rennick, Florian Mertes, and Ileana Radulescu
Adv. Geosci., 57, 37–47, https://doi.org/10.5194/adgeo-57-37-2022, https://doi.org/10.5194/adgeo-57-37-2022, 2022
Short summary
Short summary
Radon gas is the largest source of public exposure to naturally occurring radioactivity. Radon can also be used, as a tracer to improve indirectly the estimates of greenhouse gases important for supporting successful GHG mitigation strategies.
Both climate and radiation protection research communities need improved traceable low-level atmospheric radon measurements. The EMPIR project 19ENV01 traceRadon started to provide the necessary measurement infrastructure and transfer standards.
Annette Röttger, Attila Veres, Vladimir Sochor, Massimo Pinto, Michal Derlacinski, Mihail-Razvan Ioan, Amra Sabeta, Robert Bernat, Christelle Adam-Guillermin, João Henrique Gracia Alves, Denis Glavič-Cindro, Steven Bell, Britt Wens, Linda Persson, Miloš Živanović, and Reetta Nylund
Adv. Geosci., 57, 1–7, https://doi.org/10.5194/adgeo-57-1-2021, https://doi.org/10.5194/adgeo-57-1-2021, 2021
Short summary
Short summary
The goal of the EMN is a harmonized, sustainable, coordinated and intelligently specialized infrastructure to support the needs expressed in the European Radiation Protection Ordinance. Such an EMN under the umbrella of EURAMET is in the founding phase and is being prepared in parallel by the EMPIR project 19NET03 supportBSS with five technical work packages. EURAMET is the Regional Metrology Organisation (RMO) of Europe. The EMN was established by signature on 16 September 2021.
Cited articles
Alvarez, M., Luengo, D., and Lawrence, N. D.: Latent force models, J.
Mach. Learn. Res., 5, 9–16, 2009.
Amaku, M., Pascholati, P. R., and Vanin, V. R.: Decay chain differential
equations: Solution through matrix algebra, Comput. Phys. Commun.,
181, 21–23, https://doi.org/10.1016/j.cpc.2009.08.011, 2010.
Barber, D.: Expectation Correction for Smoothed Inference in Switching
Linear Dynamical Systems, J. Mach. Lear. Res., 2,
2515–2540, 2006.
Bateman, H.: Solution of a system of differential equations occuring in the
theory of radioactive transformations, P. Cam. Philos. Soc., 15,
423–427, 1910.
Biraud, S., Ciais, P., Ramonet, M., Simmonds, P., Kazan, V., Monfray, P.,
O'doherty, S., Spain, G., and Jennings, S. G.: Quantification of carbon
dioxide, methane, nitrous oxide and chloroform emissions over Ireland from
atmospheric observations at Mace Head, Tellus B, 54, 41–60, https://doi.org/10.3402/tellusb.v54i1.16647, 2002.
Bradburry, J., Frostig, R., Hawkins, P., Johnson, M. J., Maclaurin, D.,
Necula, G., Paszke, A., van der Plas, J., Wanderman-Milne, S., and Zhang,
Q.: JAX: composable transformations of Python+Numpy programs, GitHub [code],
https://github.com/google/jax (last access: 1 April 2023), 2018.
Chambers, S., Podstawczyńska, A., Pawlak, W., Fortuniak, K., Williams,
A. G., and Griffiths, A. D.: Characterizing the State of the Urban Surface
Layer Using Radon-222, J. Geophys. Res.-Atmos., 124,
770–788, https://doi.org/10.1029/2018JD029507, 2019a.
Chambers, S., Guérette, E.-A., Monk, K., Griffiths, A., Zhang, Y., Duc,
H., Cope, M., Emmerson, K., Chang, L., Silver, J., Utembe, S., Crawford, J.,
Williams, A., and Keywood, M.: Skill-Testing Chemical Transport Models
across Contrasting Atmospheric Mixing States Using Radon-222, Atmosphere,
10, 25, https://doi.org/10.3390/atmos10010025, 2019b.
Chambers, S. D., Williams, A. G., Conen, F., Griffiths, A. D., Reimann, S.,
Steinbacher, M., Krummel, P. B., Steele, L. P., van der Schoot, M. V.,
Galbally, I. E., Molloy, S. B., and Barnes, J. E.: Towards a Universal
“Baseline” Characterisation of Air Masses for High- and Low-Altitude
Observing Stations Using Radon-222, Aerosol. Air Qual. Res., 16,
885–899, https://doi.org/10.4209/aaqr.2015.06.0391, 2016.
Chambers, S. D., Preunkert, S., Weller, R., Hong, S.-B., Humphries, R. S.,
Tositti, L., Angot, H., Legrand, M., Williams, A. G., Griffiths, A. D.,
Crawford, J., Simmons, J., Choi, T. J., Krummel, P. B., Molloy, S., Loh, Z.,
Galbally, I., Wilson, S., Magand, O., Sprovieri, F., Pirrone, N., and
Dommergue, A.: Characterizing Atmospheric Transport Pathways to Antarctica
and the Remote Southern Ocean Using Radon-222, Front. Earth Sci.,
6, 190, https://doi.org/10.3389/feart.2018.00190, 2018.
Darby, S., Hill, D., Auvinen, A., Barros-Dios, J. M., Baysson, H.,
Bochicchio, F., Deo, H., Falk, R., Forastiere, F., Hakama, M., Heid, I.,
Kreienbrock, L., Kreuzer, M., Lagarde, F., Mäkeläinen, I., Muirhead,
C., Oberaigner, W., Pershagen, G., Ruano-Ravina, A., Ruosteenoja, E.,
Rosario, A. S., Tirmarche, M., Tomáscaron;ek, L., Whitley, E., Wichmann,
H.-E., and Doll, R.: Radon in homes and risk of lung cancer: collaborative
analysis of individual data from 13 European case-control studies, BMJ, 330,
223, https://doi.org/10.1136/bmj.38308.477650.63, 2005.
Ebeigbe, D., Berry, T., Schiff, S. J., and Sauer, T.: Poisson Kalman filter
for disease surveillance, Phys. Rev. Res., 2, 043028,
https://doi.org/10.1103/PhysRevResearch.2.043028, 2020.
Eichstädt, S. and Elster, C.: Advanced Mathematical and Computational Tools in Metrology and Testing IX, 84, 126–135, https://doi.org/10.1142/9789814397957_0016, 2012.
Elster, C. and Link, A.: Uncertainty evaluation for dynamic measurements
modelled by a linear time-invariant system, Metrologia, 45, 464–473,
https://doi.org/10.1088/0026-1394/45/4/013, 2008.
Fialova, E., Otahal, P. P. S., Vosahlik, J., and Mazanova, M.: Equipment for
Testing Measuring Devices at a Low-Level Radon Activity Concentration,
Int. J. Environ. Res. Pub. He., 17, 1904,
https://doi.org/10.3390/ijerph17061904, 2020.
Hartikainen, J. and Särkkä, S.: Sequential Inference for Latent
Force Models, arXiv [preprint], https://doi.org/10.48550/arXiv.1202.3730, 2012.
Janik, M., Omori, Y., and Yonehara, H.: Influence of humidity on radon and
thoron exhalation rates from building materials, Appl. Radiat. Isotopes, 95, 102–107, https://doi.org/10.1016/j.apradiso.2014.10.007,
2015.
Joint Committee for Guides in Metrology: Evaluation of measurement data –
Supplement 1 to the, JCGM 101, 90, https://www.bipm.org/documents/20126/2071204/JCGM_101_2008_E.pdf/325dcaad-c15a-407c-1105-8b7f322d651c (last access: 1 April 2023), 2008.
Julier, S., Uhlmann, J., and Durrant-Whyte, H. F.: A new method for the
nonlinear transformation of means and covariances in filters and estimators,
IEEE T. Automat. Contr., 45, 477–482,
https://doi.org/10.1109/9.847726, 2000.
Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems,
J. Basic Eng.-T. ASME, 82, 35–45, https://doi.org/10.1115/1.3662552,
1960.
Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, arXiv [preprint], https://doi.org/10.48550/arXiv.1412.6980, 2014.
Laan, V. Der, Karstens, U., Neubert, R. E. M., Laan-Luijkx, V. Der, and
Meijer, H. A. J.: Observation-based estimates of fossil fuel-derived CO2
emissions in the Netherlands using Δ14C, CO and 222Radon, Tellus B, 62, 389–402,
https://doi.org/10.1111/j.1600-0889.2010.00493.x, 2010.
Levin, I.: Atmospheric CO2 in continental Europe-an alternative approach to
clean air CO2 data, Tellus B, 39, 21–28,
https://doi.org/10.1111/j.1600-0889.1987.tb00267.x, 1987.
Levin, I., Karstens, U., Hammer, S., DellaColetta, J., Maier, F., and Gachkivskyi, M.: Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions – a case study for methane in Heidelberg, Atmos. Chem. Phys., 21, 17907–17926, https://doi.org/10.5194/acp-21-17907-2021, 2021.
Levy, E.: Decay chain differential equations: Solutions through matrix
analysis, Comput. Phys. Commun., 234, 188–194,
https://doi.org/10.1016/j.cpc.2018.07.011, 2019.
Link, A. and Elster, C.: Uncertainty evaluation for IIR (infinite impulse
response) filtering using a state-space approach, Meas. Sci.
Technol., 20, 055104, https://doi.org/10.1088/0957-0233/20/5/055104, 2009.
Linzmaier, D. and Röttger, A.: Development of a low-level radon
reference atmosphere, Appl. Radiat. Isotopes, 81, 208–211,
https://doi.org/10.1016/j.apradiso.2013.03.032, 2013.
Mazor, E., Averbuch, A., Bar-Shalom, Y., and Dayan, J.: Interacting multiple
model methods in target tracking: a survey, IEEE T. Aerospace
Elec. Sys., 34, 103–123, https://doi.org/10.1109/7.640267,
1998.
Mertes, F.: FlorianMertes/RadonDeconvolution: Version 1.0 (Release), Zenodo [code] and [data set], https://doi.org/10.5281/zenodo.7798458, 2023.
Mertes, F., Röttger, S., and Röttger, A.: A new primary emanation
standard for Radon-222, Appl. Radiat. Isotopes, 156, 108928,
https://doi.org/10.1016/j.apradiso.2019.108928, 2020.
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S.
B., Rocklin, M., Kumar, Am., Ivanov, S., Moore, J. K., Singh, S.,
Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta,
H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R.,
Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and
Scopatz, A.: SymPy: symbolic computing in Python, PeerJ Computer Science, 3,
e103, https://doi.org/10.7717/peerj-cs.103, 2017.
Minka, T. P.: Expectation Propagation for approximate Bayesian inference,
arXiv [preprint], https://doi.org/10.48550/arXiv.1301.2294, 2013.
Nadarajah, N., Tharmarasa, R., McDonald, M., and Kirubarajan, T.: IMM
Forward Filtering and Backward Smoothing for Maneuvering Target Tracking,
IEEE T. Aero. Elec. Sys., 48, 2673–2678,
https://doi.org/10.1109/TAES.2012.6237617, 2012.
Perrino, C., Pietrodangelo, A., and Febo, A.: An atmospheric stability index
based on radon progeny measurements for the evaluation of primary urban
pollution, Atmos. Environ., 35, 5235–5244,
https://doi.org/10.1016/S1352-2310(01)00349-1, 2001.
Pressyanov, D. S.: Short solution of the radioactive decay chain equations,
Am. J. Phys., 70, 444–445,
https://doi.org/10.1119/1.1427084, 2002.
Rauch, H. E., Tung, F., and Striebel, C. T.: Maximum likelihood estimates of
linear dynamic systems, AIAA J., 3, 1445–1450,
https://doi.org/10.2514/3.3166, 1965.
Röttger, A., Honig, A., and Linzmaier, D.: Calibration of commercial
radon and thoron monitors at stable activtiy concentrations, Appl.
Radiat. Isotopes, 87, 44–47,
https://doi.org/10.1016/j.apradiso.2013.11.111, 2014.
Runnalls, A. R.: Kullback-Leibler Approach to Gaussian Mixture Reduction,
IEEE T. Aero. Elec. Sys., 43, 989–999,
https://doi.org/10.1109/TAES.2007.4383588, 2007.
Särkkä, S.: Bayesian filtering and smoothing, Cambridge University
Press, https://doi.org/10.1017/CBO9781139344203, 2013.
Särkkä, S. and Solin, A.: Applied Stochastic Differential Equations,
Cambridge University Press, https://doi.org/10.1017/9781108186735, 2019.
Särkkä, S., Alvarez, M. A., and Lawrence, N. D.: Gaussian Process Latent
Force Models for Learning and Stochastic Control of Physical Systems, IEEE
T. Automat. Contr., 64, 2953–2960,
https://doi.org/10.1109/TAC.2018.2874749, 2019.
Stranden, E., Kolstad, A. K., and Lind, B.: The Influence of Moisture and
Temperature on Radon Exhalation, Radiat. Prot. Dosim., 7, 55–58,
https://doi.org/10.1093/oxfordjournals.rpd.a082962, 1984.
Williams, A. G., Chambers, S., and Griffiths, A.: Bulk Mixing and Decoupling
of the Nocturnal Stable Boundary Layer Characterized Using a Ubiquitous
Natural Tracer, Bound.-Lay. Meteorol., 149, 381–402,
https://doi.org/10.1007/s10546-013-9849-3, 2013.
Williams, A. G., Chambers, S. D., Conen, F., Reimann, S., Hill, M.,
Griffiths, A. D., and Crawford, J.: Radon as a tracer of atmospheric
influences on traffic-related air pollution in a small inland city, Tellus
B, 68, 30967,
https://doi.org/10.3402/tellusb.v68.30967, 2016.
Zhou, Q., Shubayr, N., Carmona, M., Standen, T. M., and Kearfott, K. J.:
Experimental study of dependence on humidity and flow rate for a modified
flowthrough radon source, J. Radioanal. Nucl. Ch.,
324, 673–680, https://doi.org/10.1007/s10967-020-07081-0, 2020.
Short summary
In this work, a novel approach to deduce the release of the natural radioactive noble gas 222Rn from solid sources containing the isotope 226Ra is presented. Therein, supporting radioactivity measurements of the source are used in conjunction with a theoretical description of the dynamics. For radiation protection and environmental research, reliable and comparable 222Rn measurements, and therefore reference atmospheres of 222Rn, are needed. This work improves their realization.
In this work, a novel approach to deduce the release of the natural radioactive noble gas 222Rn...
Special issue