Articles | Volume 5, issue 1
https://doi.org/10.5194/jsss-5-1-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/jsss-5-1-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Qualification concept for optical multi-scale multi-sensor systems
A. Loderer
CORRESPONDING AUTHOR
Institute of Manufacturing Metrology,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Erlangen, Germany
T. Hausotte
Institute of Manufacturing Metrology,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
Erlangen, Germany
Related authors
No articles found.
Matthias Busch and Tino Hausotte
J. Sens. Sens. Syst., 12, 1–8, https://doi.org/10.5194/jsss-12-1-2023, https://doi.org/10.5194/jsss-12-1-2023, 2023
Short summary
Short summary
The paper presents a specimen and evaluation method for interface structural resolution testing of X-ray computed tomography systems based on CT simulations. The geometry is oriented to the norms of image quality investigation. The evaluation is based on profile lines of the cross-sectional images that pass through the boreholes. All statements on resolution refer to the entire measurement chain and, thus, in addition to the reconstruction algorithm also to the surface determination method used.
Christian Orgeldinger, Florian Wohlgemuth, Andreas Michael Müller, and Tino Hausotte
J. Sens. Sens. Syst., 11, 219–223, https://doi.org/10.5194/jsss-11-219-2022, https://doi.org/10.5194/jsss-11-219-2022, 2022
Short summary
Short summary
Industrial X-ray computed tomography is a holistic measurement technique for dimensional metrology. However, the relatively long measurement time is a hindrance to its application. A possibility to reduce measurement times, the continuous scan mode, is characterized in this work. The question is how much the time reduction impacts the accuracy of the dimensional measurements. The core result of the paper is an estimate of the effect along with experimental proof that this estimate is reasonable.
Florian Wohlgemuth, Tino Hausotte, Ingomar Schmidt, Wolfgang Kimmig, and Karl Dietrich Imkamp
J. Sens. Sens. Syst., 11, 171–186, https://doi.org/10.5194/jsss-11-171-2022, https://doi.org/10.5194/jsss-11-171-2022, 2022
Short summary
Short summary
Acceptance and reverification testing for industrial CT systems is described in different standards. The characterisation and testing of CT system performance are often achieved with test artefacts containing spheres. This simulative study characterises the influence of different geometrical error sources – or geometrical misalignments – on these sphere measurements.
Martin Lerchen, Julien Schinn, and Tino Hausotte
J. Sens. Sens. Syst., 10, 247–259, https://doi.org/10.5194/jsss-10-247-2021, https://doi.org/10.5194/jsss-10-247-2021, 2021
Short summary
Short summary
In order to contribute to a standardisation and process monitoring of additive manufacturing (AM) processes, a novel referencing approach was developed to improve the assessment of geometric manufacturing and measurement deviations. This is based on a referencing system integrated in the powder bed, which enables a shortening of the measuring loop. The position-stable quartz glass pipes enable more precise specification of lateral manufacturing and measurement deviations during AM.
Martin Lerchen, Jakob Hornung, Yu Zou, and Tino Hausotte
J. Sens. Sens. Syst., 10, 219–232, https://doi.org/10.5194/jsss-10-219-2021, https://doi.org/10.5194/jsss-10-219-2021, 2021
Short summary
Short summary
The publication contributes to a uniform procedure for in-process measurement data acquisition in additive manufacturing, which is essential for a controlled correction of detected manufacturing deviations. The developed methodology is based on an analysis of the melt pool contours relative to a referencing system integrated in the powder bed. By recording the referenced melt pool and the shimmering contours after powder application, manufacturing deviations can be evaluated more accurately.
Yiting Wu, Elisa Wirthmann, Ute Klöpzig, and Tino Hausotte
J. Sens. Sens. Syst., 10, 171–177, https://doi.org/10.5194/jsss-10-171-2021, https://doi.org/10.5194/jsss-10-171-2021, 2021
Short summary
Short summary
A new metrological atomic force microscope (MAFM) head design is shown. We investigated the MAFM head in the nanomeasuring machine (NMM-1) for different high-precision and large-scale traceable measurement tasks. Due to their integration, the MAFM head can benefit from the large measuring range, high-precision and traceability of the NMM-1 for efficient measurements on different samples. The presented results show the realised macroscale measurements with sub-nanometre resolution.
Sebastian Metzner, Tamara Reuter, and Tino Hausotte
J. Sens. Sens. Syst., 9, 157–165, https://doi.org/10.5194/jsss-9-157-2020, https://doi.org/10.5194/jsss-9-157-2020, 2020
Short summary
Short summary
For the determination of the refractive index of the lubricant used in the sheet-bulk metal forming process, a lubricant thin-film thickness standard was developed which represents a continuous measuring range from 6 to 100 μm. To determine the refractive index, the thin-film thickness standard was measured with a coaxial interferometric measurement system in various thickness ranges. The results show changing optical properties with increasing layer thickness.
Andreas Michael Müller and Tino Hausotte
J. Sens. Sens. Syst., 9, 61–70, https://doi.org/10.5194/jsss-9-61-2020, https://doi.org/10.5194/jsss-9-61-2020, 2020
Short summary
Short summary
The framework of the single point uncertainty presents a methodology to determine the local measurement uncertainty for a measurement setup. The targets of the investigation were spur (involute) steel gear wheels using a CMM in scanning mode in combination with a rotatory table, as well as a single scan of the complete gear profile without the use of a rotatory table, using the
free-form scanCMM functionality. Both methods were examined with respect to their obtained single point uncertainty.
Andreas Michael Müller, Dominik Schubert, Dietmar Drummer, and Tino Hausotte
J. Sens. Sens. Syst., 9, 51–60, https://doi.org/10.5194/jsss-9-51-2020, https://doi.org/10.5194/jsss-9-51-2020, 2020
Short summary
Short summary
This paper aims to demonstrate the complete workflow of the determination of the local measurement uncertainty and its components (systematic and random measurement error) for a given measurement task. It was shown for an optical measurement setup in combination with an industrial X-ray computed tomography reference measurement system that different necessary colouring methods of polymer gear wheels have a measurable influence on the local distribution of the measurement uncertainty.
Andreas Michael Müller and Tino Hausotte
J. Sens. Sens. Syst., 7, 551–557, https://doi.org/10.5194/jsss-7-551-2018, https://doi.org/10.5194/jsss-7-551-2018, 2018
Short summary
Short summary
Computed tomography measurements can be subject to specific image artefacts, which can be dependent on the effective rotation axis of the work piece during the scan. The presented approach is to combine several CT scans with different rotation axes of the work piece using a data fusion approach. To improve the fidelity of the result, surface points are weighted individually within the algorithm, dependent on the local surface quality of the measurement.
A. Schuler, T. Hausotte, and Z. Sun
J. Sens. Sens. Syst., 4, 199–208, https://doi.org/10.5194/jsss-4-199-2015, https://doi.org/10.5194/jsss-4-199-2015, 2015
Short summary
Short summary
Measurement tasks of modern micro- and nanometrology with decreasing structure sizes and rising aspect ratios require nanometre-resolving 3-D capable sensors. A 3-D probing system based on electrical interaction is presented which is operated on a nanopositioning system NMM-1. New 3-D measurement procedures for the probing system as well as for micrometrology measurement tasks in general are shown.
Related subject area
Measurement systems: Multi-sensor systems
Integration and evaluation of the high-precision MotionCam-3D into a 3D thermography system
Laser-tracker-based reference measurement for geometric calibration of phase-measuring deflectometry with active display registration
In situ analysis of hydration and ionic conductivity of sulfonated poly(ether ether ketone) thin films using an interdigitated electrode array and a nanobalance
Method and experimental investigation of surface heat dissipation measurement using 3D thermography
Determination of the mean base circle radius of gears by optical multi-distance measurements
Pedestrian navigation system based on the inertial measurement unit sensor for outdoor and indoor environments
Sensor characterization by comparative measurements using a multi-sensor measuring system
DAV3E – a MATLAB toolbox for multivariate sensor data evaluation
Autonomous micro-platform for multisensors with an advanced power management unit (PMU)
Combined distributed Raman and Bragg fiber temperature sensing using incoherent optical frequency domain reflectometry
Simultaneous in situ characterisation of bubble dynamics and a spatially resolved concentration profile: a combined Mach–Zehnder holography and confocal Raman-spectroscopy sensor system
Capacitive gas-phase detection in liquid nitrogen
A research port test bed based on distributed optical sensors and sensor fusion framework for ad hoc situational awareness
Sensor defect detection in multisensor information fusion
Challenges and trends in manufacturing measurement technology – the “Industrie 4.0” concept
Comparing mobile and static assessment of biomass in heterogeneous grassland with a multi-sensor system
Instrumented flow-following sensor particles with magnetic position detection and buoyancy control
On the use of electrochemical multi-sensors in biologically charged media
Mobile sensor platforms: categorisation and research applications in precision farming
Miguel-David Méndez-Bohórquez, Sebastian Schramm, Robert Schmoll, and Andreas Kroll
J. Sens. Sens. Syst., 13, 123–133, https://doi.org/10.5194/jsss-13-123-2024, https://doi.org/10.5194/jsss-13-123-2024, 2024
Short summary
Short summary
3D thermograms are a good alternative when a single traditional 2D thermal image does not reveal enough information to analyze a complex object. However, the 3D thermography field is still under exploration. This paper shows a comparison of a thermography system operated with two different 3D sensors. The results indicate that the depth sensor with more accurate measurements captures the object geometry better, and therefore the interpretation of the 3D thermograms is improved.
Yann Sperling and Ralf Bernhard Bergmann
J. Sens. Sens. Syst., 13, 1–7, https://doi.org/10.5194/jsss-13-1-2024, https://doi.org/10.5194/jsss-13-1-2024, 2024
Short summary
Short summary
Phase-measuring deflectometry is an optical shape measurement technique for reflective surfaces. The basic idea is that a pattern that is observed through reflection on a curved surface gets distorted and reveals information about its shape. In this work we describe a method to move the pattern to obtain data for quantitative shape determination. The experimental setup is calibrated. With a laser tracker we reveal calibration errors and discuss their influence on the reconstructed shape.
Hendrik Wulfmeier, Niklas Warnecke, Luca Pasquini, Holger Fritze, and Philippe Knauth
J. Sens. Sens. Syst., 11, 51–59, https://doi.org/10.5194/jsss-11-51-2022, https://doi.org/10.5194/jsss-11-51-2022, 2022
Short summary
Short summary
A newly developed experimental setup to characterize thin polymeric films during dehydration and hydration is presented. The great advantage of this measurement device and technique is that it monitors the mass change and conductivity of the films in situ and simultaneously at virtually identical conditions. The feasibility of the technique is demonstrated by characterizing ionomer thin films. A mass resolution of ±7.9 ng is achieved. The precision of relative humidity (RH) control is ±0.15 %.
Robert Schmoll, Sebastian Schramm, Tom Breitenstein, and Andreas Kroll
J. Sens. Sens. Syst., 11, 41–49, https://doi.org/10.5194/jsss-11-41-2022, https://doi.org/10.5194/jsss-11-41-2022, 2022
Short summary
Short summary
The method of non-contact temperature measurement in conjunction with a 3D sensor described in this paper can be used to determine the heat loss of technical devices and industrial plants. This measurement tool thus helps to optimize the energy efficiency of these devices and plants.
Marc Pillarz, Axel von Freyberg, and Andreas Fischer
J. Sens. Sens. Syst., 9, 273–282, https://doi.org/10.5194/jsss-9-273-2020, https://doi.org/10.5194/jsss-9-273-2020, 2020
Short summary
Short summary
The necessary reliability of wind turbine gearboxes increases the requirements for large gear measurements. However, standard measuring methods reach their limits for large gears with diameters > 1 m. Therefore a scalable optical gear measurement approach is presented. At first, simulation and experimental results prove the principle applicability of the measuring approach for small gear measurements. Geometric parameters of gears can be determined with a single-digit micrometer uncertainty.
Marcin Uradzinski and Hang Guo
J. Sens. Sens. Syst., 9, 7–13, https://doi.org/10.5194/jsss-9-7-2020, https://doi.org/10.5194/jsss-9-7-2020, 2020
Sebastian Hagemeier, Markus Schake, and Peter Lehmann
J. Sens. Sens. Syst., 8, 111–121, https://doi.org/10.5194/jsss-8-111-2019, https://doi.org/10.5194/jsss-8-111-2019, 2019
Short summary
Short summary
In this contribution a multi-sensor measuring system is presented. With this measurement system comparative measurements using five different surface measurement sensors are performed under identical conditions in a single set-up. The presented measurement results show different transfer behaviour of each sensor and indicate unique advantages for tactile and optical sensors. Comparative measuring enables the investigation of measurement deviations and helps to improve appropriate techniques.
Manuel Bastuck, Tobias Baur, and Andreas Schütze
J. Sens. Sens. Syst., 7, 489–506, https://doi.org/10.5194/jsss-7-489-2018, https://doi.org/10.5194/jsss-7-489-2018, 2018
Short summary
Short summary
Predictions about systems too complex for physical modeling can be made nowadays with data-based models. Our software DAV³E is an easy way to extract relevant features from cyclic raw data, a process often neglected in other software packages, based on mathematical methods, incomplete physical models, or human intuition. Its graphical user interface further provides methods to fuse data from many sensors, to teach a model the prediction of new data, and to check the model’s performance.
Pierre Bellier, Philippe Laurent, Serguei Stoukatch, François Dupont, Laura Joris, and Michael Kraft
J. Sens. Sens. Syst., 7, 299–308, https://doi.org/10.5194/jsss-7-299-2018, https://doi.org/10.5194/jsss-7-299-2018, 2018
Short summary
Short summary
An original platform embedding multiple sensors and an energy harvesting unit is described. It is versatile and requires little or no maintenance. Multiple platforms can be connected to a hub device in a wireless sensor network. Emphasis was put on the reduction of power consumption and on the energy harvesting unit. With the addition of a small solar panel the system can be fully autonomous indoors. Characterization of power consumption and a test in real-world operation are presented.
Max Koeppel, Stefan Werzinger, Thomas Ringel, Peter Bechtold, Torsten Thiel, Rainer Engelbrecht, Thomas Bosselmann, and Bernhard Schmauss
J. Sens. Sens. Syst., 7, 91–100, https://doi.org/10.5194/jsss-7-91-2018, https://doi.org/10.5194/jsss-7-91-2018, 2018
Short summary
Short summary
Optical temperature sensors offer unique features which make them indispensable for key industries such as the energy sector. However, commercially available systems are designed to perform either distributed or hot spot temperature measurements. We have combined two measurement concepts to overcome this limitation, which allow distributed temperature measurements to be performed simultaneously with read-outs of optical hot spot temperature sensors at distinct positions along a fiber.
Jajnabalkya Guhathakurta, Daniela Schurr, Günter Rinke, Roland Dittmeyer, and Sven Simon
J. Sens. Sens. Syst., 6, 223–236, https://doi.org/10.5194/jsss-6-223-2017, https://doi.org/10.5194/jsss-6-223-2017, 2017
Christoph Kandlbinder, Alice Fischerauer, Mario Mösch, Tobias Helling, Gerhard Fischerauer, and Martin Siegl
J. Sens. Sens. Syst., 6, 135–143, https://doi.org/10.5194/jsss-6-135-2017, https://doi.org/10.5194/jsss-6-135-2017, 2017
Short summary
Short summary
In this work we present a cost- and energy-efficient measurement system for the spatial detection of gas phases in liquid fluids with a low permittivity value. We showed that we can simulate the system and its environment and use the calculated results to interpret the results originating from measurements of the electrical capacitance between different electrodes. The proposed system can be modified for, e.g., observation of fluid behaviour in cryogenic tanks for reigniteable space propulsion.
Nick Rüssmeier, Axel Hahn, Daniela Nicklas, and Oliver Zielinski
J. Sens. Sens. Syst., 6, 37–52, https://doi.org/10.5194/jsss-6-37-2017, https://doi.org/10.5194/jsss-6-37-2017, 2017
Short summary
Short summary
Maritime study sites utilized as a physical experimental test bed for sensor data fusion, communication technology and data stream analysis tools can provide substantial frameworks for design and development of e-navigation technologies. Increasing safety by observation and monitoring of the maritime environment with new technologies meets forward-looking needs to facilitate situational awareness. The study highlights research potentials and foundations achieved by distributed optical sensors.
Jan-Friedrich Ehlenbröker, Uwe Mönks, and Volker Lohweg
J. Sens. Sens. Syst., 5, 337–353, https://doi.org/10.5194/jsss-5-337-2016, https://doi.org/10.5194/jsss-5-337-2016, 2016
Short summary
Short summary
This paper presents a novel method for the detection of sensor defects. Here, the consistency between measurements of sensor groups are utilized for this method. The sensor groups are pre-determined by the structure of an existing sensor fusion algorithm, which is in turn used to determine the health of a monitored system (e.g. a machine). Defect detection results of the presented method for different test cases and the method's capability to detect a number of typical sensor defects are shown.
Dietrich Imkamp, Jürgen Berthold, Michael Heizmann, Karin Kniel, Eberhard Manske, Martin Peterek, Robert Schmitt, Jochen Seidler, and Klaus-Dieter Sommer
J. Sens. Sens. Syst., 5, 325–335, https://doi.org/10.5194/jsss-5-325-2016, https://doi.org/10.5194/jsss-5-325-2016, 2016
Short summary
Short summary
Strategic considerations and publications dealing with the future of industrial production are significantly influenced these days by the concept of "Industrie 4.0". For this reason the field of measurement technology for industrial production must also tackle this concept when thinking about future trends and challenges in metrology.
Hanieh Safari, Thomas Fricke, Björn Reddersen, Thomas Möckel, and Michael Wachendorf
J. Sens. Sens. Syst., 5, 301–312, https://doi.org/10.5194/jsss-5-301-2016, https://doi.org/10.5194/jsss-5-301-2016, 2016
Short summary
Short summary
This study aimed to explore the potential of a multi-sensor system for assessment of biomass in pastures under different grazing intensities. Prediction accuracy with a mobile application of sensors was always lower than when sensors were applied statically. However accuracy of biomass prediction improved with increasing grazing intensity. Although the limitations associated with the system especially in very lenient pastures, the finding opens up a perspective for future grazing management.
Sebastian Felix Reinecke and Uwe Hampel
J. Sens. Sens. Syst., 5, 213–220, https://doi.org/10.5194/jsss-5-213-2016, https://doi.org/10.5194/jsss-5-213-2016, 2016
Short summary
Short summary
Sensor particles with buoyancy control and position detection are presented, which are used for flow tracking in large vessels, such as biogas digesters and waste water tanks. They were tested in the realistic flows of a biogas digester. The buoyancy control allows taring for good flow tracing by the sensor particles, and it lets them float to the surface after data acquisition for easy recovery. The fluid mixing was estimated from detected passages of sensor particles at a magnetic coil.
S. Sachse, A. Bockisch, U. Enseleit, F. Gerlach, K. Ahlborn, T. Kuhnke, U. Rother, E. Kielhorn, P. Neubauer, S. Junne, and W. Vonau
J. Sens. Sens. Syst., 4, 295–303, https://doi.org/10.5194/jsss-4-295-2015, https://doi.org/10.5194/jsss-4-295-2015, 2015
C. W. Zecha, J. Link, and W. Claupein
J. Sens. Sens. Syst., 2, 51–72, https://doi.org/10.5194/jsss-2-51-2013, https://doi.org/10.5194/jsss-2-51-2013, 2013
Cited articles
Berndt, G., Hultzsch, E., and Weinhild, H.: Funktionstoleranz und
Meßunsicherheit, Wissenschaftliche Zeitschrift der Technischen
Universität Dresden, 17, 465–471, 1968.
Kästner, M., Hausotte, T., Reithmeier, E., Loderer, A., Ohrt, C., and
Sieczkarek, P.: Fertigungsnahe Qualitätskontrolle von Werkzeug und
Werkstück, Tagungsband zum 2. Erlanger Workshop Blechmassivumformung
101–118, 2013.
Keck, A., Böhm, M., Knierim, K. L., Sawodny, O., Gronle, M., Lyda, W.,
and Osten, W.: Multisensorisches Messsystem zur dreidimensionalen Inspektion
technischer Oberflächen, Technisches Messen, 81, 280–288, 2014.
Komander, B., Lorenz, D., Fischer, M., Petz, M., and Tutsch, R.: Data fusion
of surface normals and point coordinates for deflectometric measurements, J.
Sens. Sens. Syst., 3, 281–290, https://doi.org/10.5194/jsss-3-281-2014, 2014.
Loderer, A., Galovskyi, B., Hartmann, W., and Hausotte, T.: Measurement
strategy for a production-related multi-scale inspection of formed work
pieces, Proceedings of the 11th Global Conference on Sustainable
Manufacturing – GCSM 2013, 23–25 September 2013, Berlin, 148–153, 2013.
Loderer, A., Timmermann, M., Matthias, S., Kästner, M., Schneider, T.,
Hausotte, T., and Reithmeier, E.: Measuring systems for sheet-bulk metal
forming, Key Engineering Materials, 639, 291–298, 2015.
Merklein, M., Allwood, J. M., Behrens, B.-A., Brosius, A., Hagenah, H.,
Kuzmann, K., Mori, K., Tekkaya, A. E., and Weckenmann, A.: Bulk forming of
sheet metal, Annals of the CIRP, 61, 725–745, 2012.
Merklein, M., Gröbel, D., Löffler, M., Schneider, T., and
Hildenbrand, P.: Sheet-bulk metal forming forming of functional components
from sheet metals, Proceedings of the 4th International Conference on New
Forming Technology, MATEC Web of Conferences, 01001, 1–12, 2015.
Ohrt, C., Hartmann, W., Kästner, M., Weckenmann, A., Hausotte, T., and
Reithmeier, E.: Holistic measurement in the sheet-bulk metal forming process
with fringe projection, Key Engineering Materials, 504, 1005–1010, 2012.
Puente León, F. and Kammel, S.: Image fusion techniques for robust
inspection of specular surfaces, in: Multisensor,
Multisource Information Fusion: Architectures, Algorithms and Applications, edited by: Dasarathy, B. V.,
Proceedings of SPIE, 5099, 77–86, 2003.
Schaper, M., Lizunkova, Y., Vucetic, M., Cahyono, T., Hetzner, H., Opel, S.,
Schneider, T., Koch, J. and Plugge, B.: Sheet-bulk Metal Forming - A New
Process for the Production of Sheet Metal Parts with Functional Components,
Metallurgical and Mining Industry, 7, 53–58, 2011.
Shaw, L., Ettl, S., Mehari, F., Weckenmann, A., and Häusler, G.:
Automatic registration method for multisensor datasets adopted for
dimensional measurements on cutting tools, Measurement Science and
Technology, 24, 8 pp., 2013.
Short summary
This article describes a new qualification concept for dimensional measurements on optical measuring systems, using the example of a prototypical multi-scale multi-sensor fringe projection system for production-related inspections of sheet-bulk metal-formed parts. A new concept is developed for determining the orientations and positions of the sensors' measuring ranges in a common coordinate system. The principle element of the concept is a newly developed flexible reference artefact.
This article describes a new qualification concept for dimensional measurements on optical...
Special issue