Articles | Volume 10, issue 1
https://doi.org/10.5194/jsss-10-101-2021
https://doi.org/10.5194/jsss-10-101-2021
Regular research article
 | 
22 Apr 2021
Regular research article |  | 22 Apr 2021

Measurement uncertainty assessment for virtual assembly

Manuel Kaufmann, Ira Effenberger, and Marco F. Huber

Related subject area

Measurement theory, uncertainty and modeling of measurements: Measurement uncertainty
Metrological assessment of a robotic total station for use in post-earthquake emergency conditions
Giulio D'Emilia and Emanuela Natale
J. Sens. Sens. Syst., 12, 187–195, https://doi.org/10.5194/jsss-12-187-2023,https://doi.org/10.5194/jsss-12-187-2023, 2023
Short summary
Approximate sequential Bayesian filtering to estimate 222Rn emanation from 226Ra sources using spectral time series
Florian Mertes, Stefan Röttger, and Annette Röttger
J. Sens. Sens. Syst., 12, 147–161, https://doi.org/10.5194/jsss-12-147-2023,https://doi.org/10.5194/jsss-12-147-2023, 2023
Short summary
Evaluation of precision, accuracy and threshold for the design of vibrotactile feedback in eye tracking applications
Anke Fischer, Thomas M. Wendt, Lukas Stiglmeier, Philipp Gawron, and Kristof Van Laerhoven
J. Sens. Sens. Syst., 12, 103–109, https://doi.org/10.5194/jsss-12-103-2023,https://doi.org/10.5194/jsss-12-103-2023, 2023
Short summary
Influence of measurement uncertainty on machine learning results demonstrated for a smart gas sensor
Tanja Dorst, Tizian Schneider, Sascha Eichstädt, and Andreas Schütze
J. Sens. Sens. Syst., 12, 45–60, https://doi.org/10.5194/jsss-12-45-2023,https://doi.org/10.5194/jsss-12-45-2023, 2023
Short summary
Towards efficient application-dependent dimensional measurements with computed tomography: optimized reduction of measurement duration using continuous scan mode: experimental investigations
Christian Orgeldinger, Florian Wohlgemuth, Andreas Michael Müller, and Tino Hausotte
J. Sens. Sens. Syst., 11, 219–223, https://doi.org/10.5194/jsss-11-219-2022,https://doi.org/10.5194/jsss-11-219-2022, 2022
Short summary

Cited articles

Chong, C.-Y. and Mori, S.: Convex Combination and Covariance Intersection Algorithms in Distributed Fusion, in: 4th Inter. Conf. on information fusion, 7–10 August 2001, Montreal, Canada, WeA2-11-18, 2001. 
Deutsches Institut für Normung e.V.: Geometrische Produktspezifikation (GPS) – Geometrische Tolerierung: Bezüge und Bezugssysteme (ISO 5459:2011); Deutsche Fassung EN ISO 5459:2011, 17.040.30, Beuth, Berlin, 99 pp., 2011. 
Deutsches Institut für Normung e.V.: Geometrische Produktspezifikation (GPS) – Geometrische Tolerierung: Bezüge und Bezugssysteme, 01.100.20; 17.040.10, Beuth, Berlin, 236 pp., 2017. 
Fleßner, M., Müller, A., Götz, D., Helmecke, E., and Hausotte, T.: Assessment of the single point uncertainty of dimensional CT measurements, in: 6th Conference on Industrial Computed Tomography, edited by: Diederichs, R., 6th Conference on Industrial Computed Tomography (iCT) 2016, Wels, Austria, 9–12 February 2016, available at: https://www.ndt.net/article/ctc2016/papers/ICT2016_paper_id48.pdf (last access: 18 April 2021), 2016.  
Galovska, M., Petz, M., and Tutsch, R.: Unsicherheit bei der Datenfusion dimensioneller Messungen, Tech. Mess., 79, 238–245, https://doi.org/10.1524/teme.2012.0227, 2012. 
Download
Short summary
Virtual assembly (VA) is a method for the quality prediction of assemblies considering local form deviations of relevant geometries. Point clouds of measured objects are registered in order to recreate the objects’ hypothetical physical assembly state, which is strongly influenced by the measurement uncertainty of individual points. Thus, we studied the propagation of uncertainties by VA. The results reveal larger propagated uncertainties by VA compared to the unconstrained Gaussian best fit.