Articles | Volume 10, issue 1
https://doi.org/10.5194/jsss-10-71-2021
https://doi.org/10.5194/jsss-10-71-2021
Regular research article
 | 
19 Mar 2021
Regular research article |  | 19 Mar 2021

Novel, low-cost device to simultaneously measure the electrical conductivity and the Hall coefficient from room temperature up to 600 °C

Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos

Related authors

Gauge to simultaneously determine the electrical conductivity, the Hall constant, and the Seebeck coefficient up to 800 °C
Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 12, 69–84, https://doi.org/10.5194/jsss-12-69-2023,https://doi.org/10.5194/jsss-12-69-2023, 2023
Short summary
Miniaturized differential scanning calorimeter with an integrated mass sensing system: first steps
Johanna Distler, Thomas Wöhrl, Robin Werner, Michael Gerlach, Michael Gollner, Florian Linseis, Jaroslaw Kita, and Ralf Moos
J. Sens. Sens. Syst., 12, 9–19, https://doi.org/10.5194/jsss-12-9-2023,https://doi.org/10.5194/jsss-12-9-2023, 2023
Short summary

Related subject area

Sensor technologies: Characterization and testing
Methods to investigate the temperature distribution of heated ceramic gas sensors for high-temperature applications
Thomas Wöhrl, Julia Herrmann, Jaroslaw Kita, Ralf Moos, and Gunter Hagen
J. Sens. Sens. Syst., 12, 205–214, https://doi.org/10.5194/jsss-12-205-2023,https://doi.org/10.5194/jsss-12-205-2023, 2023
Short summary
Gauge to simultaneously determine the electrical conductivity, the Hall constant, and the Seebeck coefficient up to 800 °C
Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 12, 69–84, https://doi.org/10.5194/jsss-12-69-2023,https://doi.org/10.5194/jsss-12-69-2023, 2023
Short summary
Precise characterization of VCSEL in the 1550 nm band having a wavelength tuning range of 12 nm within 10 µs as light sources for fast sensor systems
Roman Kruglov, Gregor Saur, and Rainer Engelbrecht
J. Sens. Sens. Syst., 11, 161–169, https://doi.org/10.5194/jsss-11-161-2022,https://doi.org/10.5194/jsss-11-161-2022, 2022
Short summary
An algorithmic method for the identification of wood species and the classification of post-consumer wood using fluorescence lifetime imaging microscopy
Nina Leiter, Maximilian Wohlschläger, Martin Versen, and Christian Laforsch
J. Sens. Sens. Syst., 11, 129–136, https://doi.org/10.5194/jsss-11-129-2022,https://doi.org/10.5194/jsss-11-129-2022, 2022
Short summary
High-temperature behavior of housed piezoelectric resonators based on CTGS
Michal Schulz, Rezvan Ghanavati, Fabian Kohler, Jürgen Wilde, and Holger Fritze
J. Sens. Sens. Syst., 10, 271–279, https://doi.org/10.5194/jsss-10-271-2021,https://doi.org/10.5194/jsss-10-271-2021, 2021
Short summary

Cited articles

Adnane, L., Gokirmak, A., and Silva, H.: High temperature Hall measurement setup for thin film characterization, Rev. Sci. Instrum., 87, 75117, https://doi.org/10.1063/1.4959222, 2016. 
ASTM International: Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductors, Beuth-Verlag, https://doi.org/10.1520/F0076-08R16E01, 2016. 
Badwal, S.: Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity, Solid State Ionics, 52, 23–32, https://doi.org/10.1016/0167-2738(92)90088-7, 1992. 
Borup, K. A., Toberer, E. S., Zoltan, L. D., Nakatsukasa, G., Errico, M., Fleurial, J.-P., Iversen, B. B., and Snyder, G. J.: Measurement of the electrical resistivity and Hall coefficient at high temperatures, Rev. Sci. Instrum., 83, 123902, https://doi.org/10.1063/1.4770124, 2012. 
Dauphinee, T. M. and Mooser, E.: Apparatus for Measuring Resistivity and Hall Coefficient of Semiconductors, Rev. Sci. Instrum., 26, 660–664, https://doi.org/10.1063/1.1715281, 1955. 
Download
Short summary
A novel, low-cost measurement device for simultaneous high temperature measurements of the electrical conductivity and Hall coefficient has been developed. Simulations were used to design a suitable screen-printed planar platinum heating structure that generates temperatures of up to 600 °C. Simulations of the temperature distribution have been validated using thermal imaging. Measurements were compared with data from the literature to validate the functionality of the novel device.