Articles | Volume 7, issue 1
J. Sens. Sens. Syst., 7, 235–243, 2018
https://doi.org/10.5194/jsss-7-235-2018

Special issue: Sensor/IRS2 2017

J. Sens. Sens. Syst., 7, 235–243, 2018
https://doi.org/10.5194/jsss-7-235-2018

Regular research article 05 Apr 2018

Regular research article | 05 Apr 2018

Highly sensitive benzene detection with metal oxide semiconductor gas sensors – an inter-laboratory comparison

Tilman Sauerwald et al.

Related authors

Random gas mixtures for efficient gas sensor calibration
Tobias Baur, Manuel Bastuck, Caroline Schultealbert, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 411–424, https://doi.org/10.5194/jsss-9-411-2020,https://doi.org/10.5194/jsss-9-411-2020, 2020
Short summary
Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation – sensitivity and selectivity
Caroline Schultealbert, Iklim Uzun, Tobias Baur, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 283–292, https://doi.org/10.5194/jsss-9-283-2020,https://doi.org/10.5194/jsss-9-283-2020, 2020
Short summary
Enabling a new method of dynamic field-effect gas sensor operation through lithium-doped tungsten oxide
Marius Rodner, Manuel Bastuck, Andreas Schütze, Mike Andersson, Joni Huotari, Jarkko Puustinen, Jyrki Lappalainen, and Tilman Sauerwald
J. Sens. Sens. Syst., 8, 261–267, https://doi.org/10.5194/jsss-8-261-2019,https://doi.org/10.5194/jsss-8-261-2019, 2019
Short summary
Impedance model for a high-temperature ceramic humidity sensor
Henrik Lensch, Manuel Bastuck, Tobias Baur, Andreas Schütze, and Tilman Sauerwald
J. Sens. Sens. Syst., 8, 161–169, https://doi.org/10.5194/jsss-8-161-2019,https://doi.org/10.5194/jsss-8-161-2019, 2019
Short summary
Novel method for the detection of short trace gas pulses with metal oxide semiconductor gas sensors
Tobias Baur, Caroline Schultealbert, Andreas Schütze, and Tilman Sauerwald
J. Sens. Sens. Syst., 7, 411–419, https://doi.org/10.5194/jsss-7-411-2018,https://doi.org/10.5194/jsss-7-411-2018, 2018
Short summary

Related subject area

Applications: Environmental monitoring
A classification technique of civil objects by artificial neural networks using estimation of entropy on synthetic aperture radar images
Anton V. Kvasnov and Vyacheslav P. Shkodyrev
J. Sens. Sens. Syst., 10, 127–134, https://doi.org/10.5194/jsss-10-127-2021,https://doi.org/10.5194/jsss-10-127-2021, 2021
Short summary
Measure particulate matter by yourself: data-quality monitoring in a citizen science project
Aboubakr Benabbas, Martin Geißelbrecht, Gabriel Martin Nikol, Lukas Mahr, Daniel Nähr, Simon Steuer, Gabriele Wiesemann, Thomas Müller, Daniela Nicklas, and Thomas Wieland
J. Sens. Sens. Syst., 8, 317–328, https://doi.org/10.5194/jsss-8-317-2019,https://doi.org/10.5194/jsss-8-317-2019, 2019
An autonomous flame ionization detector for emission monitoring
Jan Förster, Winfred Kuipers, Christian Lenz, Steffen Ziesche, and Franz Bechtold
J. Sens. Sens. Syst., 8, 67–73, https://doi.org/10.5194/jsss-8-67-2019,https://doi.org/10.5194/jsss-8-67-2019, 2019
Short summary
Gas sensors for climate research
Louisa Scholz, Alvaro Ortiz Perez, Benedikt Bierer, Jürgen Wöllenstein, and Stefan Palzer
J. Sens. Sens. Syst., 7, 535–541, https://doi.org/10.5194/jsss-7-535-2018,https://doi.org/10.5194/jsss-7-535-2018, 2018
Short summary
Metal ion binding and tolerance of bacteria cells in view of sensor applications
Jonas Jung, Anja Blüher, Mathias Lakatos, and Gianaurelio Cuniberti
J. Sens. Sens. Syst., 7, 433–441, https://doi.org/10.5194/jsss-7-433-2018,https://doi.org/10.5194/jsss-7-433-2018, 2018
Short summary

Cited articles

Barsan, N. and Weimar, U.: Conduction Model of Metal Oxide Gas Sensors, J. Electroceram., 7, 143–167, https://doi.org/10.1023/A:1014405811371, 2001. 
Bastuck, M., Leidinger, M., Sauerwald, T., and Schütze, A.: Improved quantification of naphthalene using non-linear Partial Least Squares Regression, in: 16th International Symposium on Olfaction and Electronic Nose, Dijon, France, 28 June–1 July 2015, 1–2, available at: http://arxiv.org/abs/1507.05834 (last access: 2 February 2018), 2015a. 
Bastuck, M., Bur, C., Sauerwald, T., Spetz, A. L., Andersson, M., and Schütze, A.: Quantification of Volatile Organic Compounds in the ppb-range using Partial Least Squares Regression, Proceedings SENSOR 2015, 19–21 May 2015, Nuremberg, Germany, 584–589, https://doi.org/10.5162/sensor2015/D5.1, 2015b. 
Bastuck, M., Baur, T., Schütze, A., and Sauerwald, T.: DAV3E: Data Analysis and Verification/Visualization/Validation Environment für die Multisensor-Datenfusion, 18. GMA/ITG-Fachtagung Sensoren und Messsyst. 2016, 10–11 May 2016, Nuremberg, Germany, 729–734, https://doi.org/10.5162/sensoren2016/P7.3, 2016. 
Batterman, S., Chambliss, S., and Isakov, V.: NIH Public Access, Atmos. Environ., 94, 518–528, 1994. 
Download
Short summary
For detection of benzene, a multichannel gas sensor system was tested in two different laboratories at the concentration range from 0.5 ppb up to 10 ppb. A model is used to extract the channels and multilinear regression is done to compensate cross interference to other gases. Depending on the measurement conditions, the quantification accuracy is between ±0.2 ppb and ±2 ppb. Regression models for one laboratory were transferable between the labs under comparable measurement conditions.
Special issue