Articles | Volume 9, issue 2
https://doi.org/10.5194/jsss-9-363-2020
https://doi.org/10.5194/jsss-9-363-2020
Regular research article
 | 
02 Nov 2020
Regular research article |  | 02 Nov 2020

Intelligent fault detection of electrical assemblies using hierarchical convolutional networks for supporting automatic optical inspection systems

Alida Ilse Maria Schwebig and Rainer Tutsch

Related authors

Compilation of training datasets for use of convolutional neural networks supporting automatic inspection processes in industry 4.0 based electronic manufacturing
Alida Ilse Maria Schwebig and Rainer Tutsch
J. Sens. Sens. Syst., 9, 167–178, https://doi.org/10.5194/jsss-9-167-2020,https://doi.org/10.5194/jsss-9-167-2020, 2020
Short summary

Related subject area

Measurement systems: Sensor signal processing and electronics
Extraction of nanometer-scale displacements from noisy signals at frequencies down to 1 mHz obtained by differential laser Doppler vibrometry
Dhyan Kohlmann, Marvin Schewe, Hendrik Wulfmeier, Christian Rembe, and Holger Fritze
J. Sens. Sens. Syst., 13, 167–177, https://doi.org/10.5194/jsss-13-167-2024,https://doi.org/10.5194/jsss-13-167-2024, 2024
Short summary
Simple in-system control of microphone sensitivities in an array
Artem Ivanov
J. Sens. Sens. Syst., 13, 81–88, https://doi.org/10.5194/jsss-13-81-2024,https://doi.org/10.5194/jsss-13-81-2024, 2024
Short summary
Wireless surface acoustic wave resonator sensors: fast Fourier transform, empirical mode decomposition or wavelets for the frequency estimation in one shot?
Angel Scipioni, Pascal Rischette, and Agnès Santori
J. Sens. Sens. Syst., 12, 247–260, https://doi.org/10.5194/jsss-12-247-2023,https://doi.org/10.5194/jsss-12-247-2023, 2023
Short summary
Ultrasonic measurement setup for monitoring pre-thawing stages of food
Ruchi Jha, Walter Lang, and Reiner Jedermann
J. Sens. Sens. Syst., 12, 133–139, https://doi.org/10.5194/jsss-12-133-2023,https://doi.org/10.5194/jsss-12-133-2023, 2023
Short summary
Digital twin concepts for linking live sensor data with real-time models
Reiner Jedermann, Kunal Singh, Walter Lang, and Pramod Mahajan
J. Sens. Sens. Syst., 12, 111–121, https://doi.org/10.5194/jsss-12-111-2023,https://doi.org/10.5194/jsss-12-111-2023, 2023
Short summary

Cited articles

Berger, M.: Test- und Prüfverfahren in der Elektronikfertigung: Vom Arbeitsprinzip bis Design-for-Test-Regeln, VDE-Verlag, Berlin, 250 pp., 2012. 
Combet, C. and Chang, M.-M.: 01005 Assembly, the AOI route to optimizing yield, Vi TECHNOLOGY, available at: https://smtnet.com/library/files/upload/01005Assembly.pdf (last access: May 2020), 2009. 
Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning, MIT Press, Cambridge, Massachusetts, London, UK, 1785 pp., 2016. 
Hope, T., Resheff, Y. S., and Lieder, I.: Einführung in TensorFlow: Deep-Learning-Systeme programmieren, trainieren, skalieren und deployen, Safari Tech Books Online, O'Reilly, Heidelberg, 224 pp., 2018. 
Mao, X., Hijazi, S., Casas, R., Kaul, P., Kumar, R., and Rowen, C.: Hierarchical CNN for traffic sign recognition, in: IEEE Intelligent Vehicles Symposium (IV), Gothenburg, 130–135, https://doi.org/10.1109/IVS.2016.7535376, 2016. 
Download
Short summary
In order to further increase the performance of neural networks in the field of optical quality assurance of soldered joints, a hierarchical classifier can be used instead of a single network. The global expansion of the classifier enables the inspection task to be distributed over several subnetworks, which results in higher accuracy. Since the individual sub-models only concentrate on the identification of certain characteristics, categorical problems can be solved more effectively.