Articles | Volume 2, issue 2
https://doi.org/10.5194/jsss-2-179-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/jsss-2-179-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis
N. Orlowski
Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Landscape Ecology and Resources Management (ILR), Justus-Liebig-University Giessen (JLU), Giessen, Germany
H.-G. Frede
Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Landscape Ecology and Resources Management (ILR), Justus-Liebig-University Giessen (JLU), Giessen, Germany
N. Brüggemann
Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences – Agrosphere (IBG-3), Jülich, Germany
L. Breuer
Research Centre for BioSystems, Land Use and Nutrition (IFZ), Institute for Landscape Ecology and Resources Management (ILR), Justus-Liebig-University Giessen (JLU), Giessen, Germany
Related authors
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Jiří Kocum, Jan Haidl, Ondřej Gebouský, Kristýna Falátková, Václav Šípek, Martin Šanda, Natalie Orlowski, and Lukáš Vlček
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-225, https://doi.org/10.5194/hess-2024-225, 2024
Preprint under review for HESS
Short summary
Short summary
We present a new method for extracting water from soil for stable isotope analysis. The reason for initiating the development was the need to easily and accurately extract sufficient amounts of water from soil samples. The developed apparatus for this method has a medium throughput, high accuracy and high precision. The method is suitable for experiments and studies where high precision is required to distinguish between different pools of water and where mere trend detection is not sufficient.
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Natalie Orlowski, Philipp Kraft, Jakob Pferdmenges, and Lutz Breuer
Hydrol. Earth Syst. Sci., 20, 3873–3894, https://doi.org/10.5194/hess-20-3873-2016, https://doi.org/10.5194/hess-20-3873-2016, 2016
Short summary
Short summary
The 2-year measurements of δ2H and δ18O in rainfall, stream, soil, and groundwater revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions in the Schwingbach catchment. We established a hydrological model to estimate spatially distributed groundwater ages and flow directions. Our model revealed complex age dynamics and showed that runoff must have been stored in the catchment for much longer than event water.
A. H. Aubert, O. Schnepel, P. Kraft, T. Houska, I. Plesca, N. Orlowski, and L. Breuer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-11591-2015, https://doi.org/10.5194/hessd-12-11591-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Studienlandschaft Schwingbachtal is an out-door full-scale study site since 2008. It deals with hydrology in an interdisciplinary approach and enhances active learning by various means (field monitoring, education trails and geocache). In order to adapt to the change in students habits and to suit better as a communication tool for the locals, it is newly equipped with augmented reality which adds virtual objects on the real landscape, making learning pleasant.
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Jiří Kocum, Jan Haidl, Ondřej Gebouský, Kristýna Falátková, Václav Šípek, Martin Šanda, Natalie Orlowski, and Lukáš Vlček
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-225, https://doi.org/10.5194/hess-2024-225, 2024
Preprint under review for HESS
Short summary
Short summary
We present a new method for extracting water from soil for stable isotope analysis. The reason for initiating the development was the need to easily and accurately extract sufficient amounts of water from soil samples. The developed apparatus for this method has a medium throughput, high accuracy and high precision. The method is suitable for experiments and studies where high precision is required to distinguish between different pools of water and where mere trend detection is not sufficient.
Alexander Kelsch, Matthias Claß, and Nicolas Brüggemann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1987, https://doi.org/10.5194/egusphere-2024-1987, 2024
Short summary
Short summary
We wanted to know how well the Dräger Tube Method (DTM) is able to measure ammonia in agricultural experiments on small plots. We therefore compared the accuracy and sensitivity of Dräger Tubes in laboratory tests with more advanced analyzers. Dräger Tubes had a detection limit three to four times higher than expected. Since there are areas where the use of advanced analyzers is not feasible, the DTM should be improved, or new simple and cost-effective measuring methods should be developed.
Max Weißenborn, Lutz Breuer, and Tobias Houska
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-183, https://doi.org/10.5194/hess-2024-183, 2024
Preprint under review for HESS
Short summary
Short summary
Our study compares neural network models for predicting discharge in ungauged basins. We evaluated Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) using 28 years of weather data. CNN showed the best accuracy, while GRU were faster and nearly as accurate. Adding static features improved all models. The research enhances flood forecasting and water management in regions lacking direct measurements, offering efficient and accurate predictive tools.
Joschka Neumann, Nicolas Brüggemann, Patrick Chaumet, Normen Hermes, Jan Huwer, Peter Kirchner, Werner Lesmeister, Wilhelm August Mertens, Thomas Pütz, Jörg Wolters, Harry Vereecken, and Ghaleb Natour
EGUsphere, https://doi.org/10.5194/egusphere-2024-1598, https://doi.org/10.5194/egusphere-2024-1598, 2024
Short summary
Short summary
Climate change in combination with a steadily growing world population and a simultaneous decrease in agricultural land is one of the greatest global challenges facing mankind. In this context, Forschungszentrum Jülich established an "agricultural simulator" (AgraSim), which enables research into the effects of climate change on agricultural ecosystems and the optimization of agricultural cultivation and management strategies with the aid of combined experimental and numerical simulation.
Elizabeth Gachibu Wangari, Ricky Mwangada Mwanake, Tobias Houska, David Kraus, Gretchen Maria Gettel, Ralf Kiese, Lutz Breuer, and Klaus Butterbach-Bahl
Biogeosciences, 20, 5029–5067, https://doi.org/10.5194/bg-20-5029-2023, https://doi.org/10.5194/bg-20-5029-2023, 2023
Short summary
Short summary
Agricultural landscapes act as sinks or sources of the greenhouse gases (GHGs) CO2, CH4, or N2O. Various physicochemical and biological processes control the fluxes of these GHGs between ecosystems and the atmosphere. Therefore, fluxes depend on environmental conditions such as soil moisture, soil temperature, or soil parameters, which result in large spatial and temporal variations of GHG fluxes. Here, we describe an example of how this variation may be studied and analyzed.
Ricky Mwangada Mwanake, Gretchen Maria Gettel, Elizabeth Gachibu Wangari, Clarissa Glaser, Tobias Houska, Lutz Breuer, Klaus Butterbach-Bahl, and Ralf Kiese
Biogeosciences, 20, 3395–3422, https://doi.org/10.5194/bg-20-3395-2023, https://doi.org/10.5194/bg-20-3395-2023, 2023
Short summary
Short summary
Despite occupying <1 %; of the globe, streams are significant sources of greenhouse gas (GHG) emissions. In this study, we determined anthropogenic effects on GHG emissions from streams. We found that anthropogenic-influenced streams had up to 20 times more annual GHG emissions than natural ones and were also responsible for seasonal peaks. Anthropogenic influences also altered declining GHG flux trends with stream size, with potential impacts on stream-size-based spatial upscaling techniques.
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
Jaqueline Stenfert Kroese, John N. Quinton, Suzanne R. Jacobs, Lutz Breuer, and Mariana C. Rufino
SOIL, 7, 53–70, https://doi.org/10.5194/soil-7-53-2021, https://doi.org/10.5194/soil-7-53-2021, 2021
Short summary
Short summary
Particulate macronutrient concentrations were up to 3-fold higher in a natural forest catchment compared to fertilized agricultural catchments. Although the particulate macronutrient concentrations were lower in the smallholder agriculture catchment, because of higher sediment loads from that catchment, the total particulate macronutrient loads were higher. Land management practices should be focused on agricultural land to reduce the loss of soil carbon and nutrients to the stream.
Jordi Vilà-Guerau de Arellano, Patrizia Ney, Oscar Hartogensis, Hugo de Boer, Kevin van Diepen, Dzhaner Emin, Geiske de Groot, Anne Klosterhalfen, Matthias Langensiepen, Maria Matveeva, Gabriela Miranda-García, Arnold F. Moene, Uwe Rascher, Thomas Röckmann, Getachew Adnew, Nicolas Brüggemann, Youri Rothfuss, and Alexander Graf
Biogeosciences, 17, 4375–4404, https://doi.org/10.5194/bg-17-4375-2020, https://doi.org/10.5194/bg-17-4375-2020, 2020
Short summary
Short summary
The CloudRoots field experiment has obtained an open comprehensive observational data set that includes soil, plant, and atmospheric variables to investigate the interactions between a heterogeneous land surface and its overlying atmospheric boundary layer, including the rapid perturbations of clouds in evapotranspiration. Our findings demonstrate that in order to understand and represent diurnal variability, we need to measure and model processes from the leaf to the landscape scales.
Amani Mahindawansha, Christoph Külls, Philipp Kraft, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 3627–3642, https://doi.org/10.5194/hess-24-3627-2020, https://doi.org/10.5194/hess-24-3627-2020, 2020
Short summary
Short summary
Stable isotopes of soil water are an effective tool to reveal soil hydrological processes in irrigated agricultural fields. Flow mechanisms and isotopic patterns of soil water in the soil matrix differ, depending on the crop and irrigation practices. Isotope data supported the fact that unproductive water losses via evaporation can be reduced by introducing dry seasonal crops to the crop rotation system.
Michael C. Thrun, Alfred Ultsch, and Lutz Breuer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-87, https://doi.org/10.5194/gmd-2020-87, 2020
Revised manuscript not accepted
Short summary
Short summary
We propose an explainable AI (XAI) framework for times series describing water quality & environmental parameters. The relationship between parameters is investigated by swarm based cluster analysis designed to find similar days within & dissimilar days between clusters. Resulting clusters define three states of water bodies & are visualized by a topographic map of high-dimensional structures. Rules generated by the XAI system explain clusters & improve the understanding of aquatic environments.
Florian U. Jehn, Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska
Hydrol. Earth Syst. Sci., 24, 1081–1100, https://doi.org/10.5194/hess-24-1081-2020, https://doi.org/10.5194/hess-24-1081-2020, 2020
Short summary
Short summary
We grouped 643 rivers from the United States into 10 behavioral groups based on their hydrological behavior (e.g., how much water they transport overall). Those groups are aligned with the ecoregions in the United States. Depending on the groups’ location and other characteristics, either snow, aridity or seasonality is most important for the behavior of the rivers in a group. We also find that very similar river behavior can be found in rivers far apart and with different characteristics.
Sebastian Multsch, Maarten S. Krol, Markus Pahlow, André L. C. Assunção, Alberto G. O. P. Barretto, Quirijn de Jong van Lier, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 307–324, https://doi.org/10.5194/hess-24-307-2020, https://doi.org/10.5194/hess-24-307-2020, 2020
Short summary
Short summary
Expanding irrigation in agriculture is one of Brazil's strategies to increase production. In this study the amount of water required to grow the main crops has been calculated and compared to the water that is available in rivers at least 95 % of the time. Future decisions regarding expanding irrigated cropping areas must, while intensifying production practices, consider the likely regional effects on water scarcity levels, in order to reach sustainable agricultural production.
Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, María P. González-Dugo, Günther Heinemann, Cor M. J. Jacobs, Matthias Mauder, Arnold F. Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodríguez, Todd M. Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph K. Thomas, Veronika Valler, Matthias J. Zeeman, and Harry Vereecken
Biogeosciences, 16, 1111–1132, https://doi.org/10.5194/bg-16-1111-2019, https://doi.org/10.5194/bg-16-1111-2019, 2019
Short summary
Short summary
To obtain magnitudes of flux components of H2O and CO2 (e.g., transpiration, soil respiration), we applied source partitioning approaches after Scanlon and Kustas (2010) and after Thomas et al. (2008) to high-frequency eddy covariance measurements of 12 study sites covering various ecosystems (croplands, grasslands, and forests) in different climatic regions. We analyzed the interrelations among turbulence, site characteristics, and the performance of both partitioning methods.
Suzanne R. Jacobs, Edison Timbe, Björn Weeser, Mariana C. Rufino, Klaus Butterbach-Bahl, and Lutz Breuer
Hydrol. Earth Syst. Sci., 22, 4981–5000, https://doi.org/10.5194/hess-22-4981-2018, https://doi.org/10.5194/hess-22-4981-2018, 2018
Short summary
Short summary
This study investigated how land use affects stream water sources and flow paths in an East African tropical montane area. Rainfall was identified as an important stream water source in the forest and smallholder agriculture sub-catchments, while springs were more important in the commercial tea plantation sub-catchment. However, 15 % or less of the stream water consisted of water with an age of less than 3 months, indicating that groundwater plays an important role in all land use types.
Florian U. Jehn, Lutz Breuer, Tobias Houska, Konrad Bestian, and Philipp Kraft
Hydrol. Earth Syst. Sci., 22, 4565–4581, https://doi.org/10.5194/hess-22-4565-2018, https://doi.org/10.5194/hess-22-4565-2018, 2018
Short summary
Short summary
By realizing that hydrological models are not one single hypothesis, but an assemblage of many hypotheses, new ways to scrutinize hydrological models are needed. Up until now, studies concentrate on comparing existing models or built models incrementally. This approach here tries to tackle the problem the other way around. We construct a complex model, containing all processes important for the catchment, and deconstruct it step by step to understand the influence of single processes.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Tobias Houska, David Kraus, Ralf Kiese, and Lutz Breuer
Biogeosciences, 14, 3487–3508, https://doi.org/10.5194/bg-14-3487-2017, https://doi.org/10.5194/bg-14-3487-2017, 2017
Short summary
Short summary
CO2 and N2O are two prominent GHGs contributing to global warming. We combined measurement and modelling to quantify GHG emissions from adjacent arable, forest and grassland sites in Germany. Measured emissions reveal seasonal patterns and management effects like fertilizer application, tillage, harvest and grazing. Modelling helps to estimate the magnitude and uncertainty of not measurable C and N fluxes and indicates missing input source, e.g. nitrate uptake from groundwater.
Natalie Orlowski, Philipp Kraft, Jakob Pferdmenges, and Lutz Breuer
Hydrol. Earth Syst. Sci., 20, 3873–3894, https://doi.org/10.5194/hess-20-3873-2016, https://doi.org/10.5194/hess-20-3873-2016, 2016
Short summary
Short summary
The 2-year measurements of δ2H and δ18O in rainfall, stream, soil, and groundwater revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions in the Schwingbach catchment. We established a hydrological model to estimate spatially distributed groundwater ages and flow directions. Our model revealed complex age dynamics and showed that runoff must have been stored in the catchment for much longer than event water.
Giovanny M. Mosquera, Catalina Segura, Kellie B. Vaché, David Windhorst, Lutz Breuer, and Patricio Crespo
Hydrol. Earth Syst. Sci., 20, 2987–3004, https://doi.org/10.5194/hess-20-2987-2016, https://doi.org/10.5194/hess-20-2987-2016, 2016
Short summary
Short summary
This study focuses on the investigation of baseflow mean transit times (MTTs) in a high-elevation tropical ecosystem (páramo) using stable water isotopes. Results showed short MTTs (< 9 months) and topographic controls on their spatial variability. We conclude that (1) the hydrology of the ecosystem is dominated by shallow subsurface flow and (2) the interplay between the high storage capacity of the páramo soils and the catchments' slopes provides the ecosystem with high regulation capacity.
A. H. Aubert, O. Schnepel, P. Kraft, T. Houska, I. Plesca, N. Orlowski, and L. Breuer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-11591-2015, https://doi.org/10.5194/hessd-12-11591-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Studienlandschaft Schwingbachtal is an out-door full-scale study site since 2008. It deals with hydrology in an interdisciplinary approach and enhances active learning by various means (field monitoring, education trails and geocache). In order to adapt to the change in students habits and to suit better as a communication tool for the locals, it is newly equipped with augmented reality which adds virtual objects on the real landscape, making learning pleasant.
Y. Rothfuss, S. Merz, J. Vanderborght, N. Hermes, A. Weuthen, A. Pohlmeier, H. Vereecken, and N. Brüggemann
Hydrol. Earth Syst. Sci., 19, 4067–4080, https://doi.org/10.5194/hess-19-4067-2015, https://doi.org/10.5194/hess-19-4067-2015, 2015
Short summary
Short summary
Profiles of soil water stable isotopes were followed non-destructively and with high precision for a period of 290 days in the laboratory
Rewatering at the end of the experiment led to instantaneous resetting of the isotope profiles, which could be closely followed with the new method
The evaporation depth dynamics was determined from isotope gradients calculation
Uncertainty associated with the determination of isotope kinetic fractionation where highlighted from inverse modeling.
S. Multsch, J.-F. Exbrayat, M. Kirby, N. R. Viney, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 8, 1233–1244, https://doi.org/10.5194/gmd-8-1233-2015, https://doi.org/10.5194/gmd-8-1233-2015, 2015
Short summary
Short summary
Irrigation agriculture is required to sustain yields that allow feeding the world population. A robust assessment of irrigation requirement (IRR) relies on a sound quantification of evapotranspiration (ET). We prepared a multi-model ensemble considering several ET methods and investigate uncertainties in simulating IRR. More generally, we provide an example of the value of investigating the uncertainty in models that may be used to inform policy-making and to elaborate best management practices.
E. Timbe, D. Windhorst, R. Celleri, L. Timbe, P. Crespo, H.-G. Frede, J. Feyen, and L. Breuer
Hydrol. Earth Syst. Sci., 19, 1153–1168, https://doi.org/10.5194/hess-19-1153-2015, https://doi.org/10.5194/hess-19-1153-2015, 2015
Short summary
Short summary
Stream, soil and precipitation waters were collected in a tropical montane cloud forest catchment for 2 years and analyzed for stable water isotopes in order to infer transit time distribution functions and mean transit times for semi-steady-state conditions. Samples were aggregated to diverse sampling resolutions for checking the sensitivity of sampling frequency on lumped-model predictions. Results provide valuable information for the planning of future fieldwork in similar catchments.
D. Windhorst, P. Kraft, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 4113–4127, https://doi.org/10.5194/hess-18-4113-2014, https://doi.org/10.5194/hess-18-4113-2014, 2014
E. Timbe, D. Windhorst, P. Crespo, H.-G. Frede, J. Feyen, and L. Breuer
Hydrol. Earth Syst. Sci., 18, 1503–1523, https://doi.org/10.5194/hess-18-1503-2014, https://doi.org/10.5194/hess-18-1503-2014, 2014
S. Multsch, Y. A. Al-Rumaikhani, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 6, 1043–1059, https://doi.org/10.5194/gmd-6-1043-2013, https://doi.org/10.5194/gmd-6-1043-2013, 2013
D. Windhorst, T. Waltz, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 17, 409–419, https://doi.org/10.5194/hess-17-409-2013, https://doi.org/10.5194/hess-17-409-2013, 2013
J.-F. Exbrayat, N. R. Viney, H.-G. Frede, and L. Breuer
Geosci. Model Dev., 6, 117–125, https://doi.org/10.5194/gmd-6-117-2013, https://doi.org/10.5194/gmd-6-117-2013, 2013
Related subject area
Sensor technologies: Characterization and testing
Methods to investigate the temperature distribution of heated ceramic gas sensors for high-temperature applications
Gauge to simultaneously determine the electrical conductivity, the Hall constant, and the Seebeck coefficient up to 800 °C
Precise characterization of VCSEL in the 1550 nm band having a wavelength tuning range of 12 nm within 10 µs as light sources for fast sensor systems
An algorithmic method for the identification of wood species and the classification of post-consumer wood using fluorescence lifetime imaging microscopy
High-temperature behavior of housed piezoelectric resonators based on CTGS
Investigation of a metrological atomic force microscope system with a combined cantilever position, bending and torsion detection system
Novel, low-cost device to simultaneously measure the electrical conductivity and the Hall coefficient from room temperature up to 600 °C
Random gas mixtures for efficient gas sensor calibration
Characterization of ceramics based on laser speckle photometry
Optimization of soot deposition by high-temperature prepolarization of a resistive particulate matter sensor
Comparison of different fiber coatings for distributed strain measurement in cementitious matrices
Measurement of the Beruforge 152DL thin-film lubricant using a developed thin-film thickness standard
Analysis and optimization of a cone flowmeter performance by means of a numerical and experimental approach
Dynamic characterization of multi-component sensors for force and moment
Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments
In situ high-temperature gas sensors: continuous monitoring of the combustion quality of different wood combustion systems and optimization of combustion process
Transferable micromachined piezoresistive force sensor with integrated double-meander-spring system
Oxygen transport in epitaxial SrTiO3/SrTi1 − xFexO3 multilayer stacks
Fibre optic sensing system for monitoring of current collectors and overhead contact lines of railways
Optimization of a sensor for a Tian–Calvet calorimeter with LTCC-based sensor discs
Characterisation of the polarisation state of embedded piezoelectric transducers by thermal waves and thermal pulses
Investigation of dielectric properties of multilayer structures consisting of homogeneous plastics and liquid solutions at 75–110 GHz
A systematic MEMS sensor calibration framework
Monitoring human serum albumin cell cultures using surface plasmon resonance (SPR) spectroscopy
Alternative strategy for manufacturing of all-solid-state reference electrodes for potentiometry
Carbon monoxide gas sensing properties of Ga-doped ZnO film grown by ion plating with DC arc discharge
Humidity measurement with capacitive humidity sensors between −70°C and 25°C in low vacuum
Fabrication and characterization of a piezoresistive humidity sensor with a stress-free package
Thomas Wöhrl, Julia Herrmann, Jaroslaw Kita, Ralf Moos, and Gunter Hagen
J. Sens. Sens. Syst., 12, 205–214, https://doi.org/10.5194/jsss-12-205-2023, https://doi.org/10.5194/jsss-12-205-2023, 2023
Short summary
Short summary
Sensors for detecting various gases, such as nitrogen oxides, play a major role in times of climate change in protecting the environment from the possible toxic influences of such gases. Due to their usually complex design, gas sensors may react to changes in the operating temperature, which can occur due to different ambient influences. This article shows two methods for accurately measuring the temperature on the surface of a sensor under realistic conditions.
Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 12, 69–84, https://doi.org/10.5194/jsss-12-69-2023, https://doi.org/10.5194/jsss-12-69-2023, 2023
Short summary
Short summary
A high-temperature gauge to simultaneously determine electrical conductivity, the Hall constant, and the Seebeck coefficient was developed. Screen-printed heating structures on a ceramic sample holder generate temperatures up to 800 °C. Heating structures were designed using FEM simulations. The temperature distribution was validated by thermal imaging. Measurements on constantan (reference material) and boron-doped silicon wafer confirm the functionality of the gauge up to 800 °C.
Roman Kruglov, Gregor Saur, and Rainer Engelbrecht
J. Sens. Sens. Syst., 11, 161–169, https://doi.org/10.5194/jsss-11-161-2022, https://doi.org/10.5194/jsss-11-161-2022, 2022
Short summary
Short summary
Gas analysis by absorption spectroscopy helps to optimize combustion processes in engines. Optical distance sensors are non-contact and offer high accuracy and precision. Both sensor applications benefit from light sources with a rapidly swept wavelength to monitor dynamic processes. In our paper, we precisely characterize the dynamic wavelength sweep of a rapidly pulsed VCSEL (vertical cavity surface emitting laser), a tiny semiconductor laser well suited for optical sensing.
Nina Leiter, Maximilian Wohlschläger, Martin Versen, and Christian Laforsch
J. Sens. Sens. Syst., 11, 129–136, https://doi.org/10.5194/jsss-11-129-2022, https://doi.org/10.5194/jsss-11-129-2022, 2022
Short summary
Short summary
In this contribution the frequency domain fluorescence lifetime imaging microscopy (FD-FLIM) technique is evaluated for post-consumer wood sorting. The measured data were processed using algorithmic decision trees to identify the wood species and post-consumer wood category. The experimental results revealed the high potential of the FD-FLIM technique for automated post-consumer wood sorting.
Michal Schulz, Rezvan Ghanavati, Fabian Kohler, Jürgen Wilde, and Holger Fritze
J. Sens. Sens. Syst., 10, 271–279, https://doi.org/10.5194/jsss-10-271-2021, https://doi.org/10.5194/jsss-10-271-2021, 2021
Short summary
Short summary
Temperature sensors based on piezoelectric devices enable precise measurement of temperature changes in harsh environments such as high temperatures or aggressive atmospheres. In the case of this device, the change in the temperature is detected by means of the changing resonance frequency of the sensor. Here a sensor device based on catangasite (an isomorph of quartz) is presented. We discuss its behavior at elevated temperatures and confirm that it can successfully operate up to 1030 °C.
Yiting Wu, Elisa Wirthmann, Ute Klöpzig, and Tino Hausotte
J. Sens. Sens. Syst., 10, 171–177, https://doi.org/10.5194/jsss-10-171-2021, https://doi.org/10.5194/jsss-10-171-2021, 2021
Short summary
Short summary
A new metrological atomic force microscope (MAFM) head design is shown. We investigated the MAFM head in the nanomeasuring machine (NMM-1) for different high-precision and large-scale traceable measurement tasks. Due to their integration, the MAFM head can benefit from the large measuring range, high-precision and traceability of the NMM-1 for efficient measurements on different samples. The presented results show the realised macroscale measurements with sub-nanometre resolution.
Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 10, 71–81, https://doi.org/10.5194/jsss-10-71-2021, https://doi.org/10.5194/jsss-10-71-2021, 2021
Short summary
Short summary
A novel, low-cost measurement device for simultaneous high temperature measurements of the electrical conductivity and Hall coefficient has been developed. Simulations were used to design a suitable screen-printed planar platinum heating structure that generates temperatures of up to 600 °C. Simulations of the temperature distribution have been validated using thermal imaging. Measurements were compared with data from the literature to validate the functionality of the novel device.
Tobias Baur, Manuel Bastuck, Caroline Schultealbert, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 411–424, https://doi.org/10.5194/jsss-9-411-2020, https://doi.org/10.5194/jsss-9-411-2020, 2020
Short summary
Short summary
Applications like air quality, fire detection and detection of explosives require selective and quantitative measurements in an ever-changing background of interfering gases. One main issue hindering the successful implementation of gas sensors in real-world applications is the lack of appropriate calibration procedures for advanced gas sensor systems. This article presents a calibration scheme for gas sensors based on gas profiles with unique randomized gas mixtures.
Lili Chen, Ulana Cikalova, Beatrice Bendjus, Stefan Muench, and Mike Roellig
J. Sens. Sens. Syst., 9, 345–354, https://doi.org/10.5194/jsss-9-345-2020, https://doi.org/10.5194/jsss-9-345-2020, 2020
Short summary
Short summary
This paper describes an optical sensor system based on the technique of laser speckle photometry (LSP) for the application of stress characterization and defect detection in ceramics. The purpose of the research is to develop an in-line inspection solution for the industrial field. The preliminary results show that the LSP technique has the potential to fulfill the task.
Jens Ebel, Carolin Schilling, and Holger Fritze
J. Sens. Sens. Syst., 9, 263–271, https://doi.org/10.5194/jsss-9-263-2020, https://doi.org/10.5194/jsss-9-263-2020, 2020
Short summary
Short summary
In a very specific way, this research paper shows how established systems – in this case a commercial soot sensor for the automotive sector – can be optimized by diving deep into the basic research. The approach here is to link macroscopic observations or signal behavior with processes taking place on the atomic level. Taking these fundamental processes into account, the sensor's specific response time could be shortened effectively by a change in operating strategy – without any design changes.
Martin Weisbrich, Klaus Holschemacher, and Thomas Bier
J. Sens. Sens. Syst., 9, 189–197, https://doi.org/10.5194/jsss-9-189-2020, https://doi.org/10.5194/jsss-9-189-2020, 2020
Short summary
Short summary
Distributed fiber optic strain measurement based on Rayleigh scattering enables the monitoring of strain along the entire fiber length and the possibility of integration into material matrices. In this article, optical fibers were integrated into the concrete matrix of small prisms to measure the deformation by drying. In comparison with a reference measuring method, the losses of strain transfer were measured. The analysis shows a high correlation between the reference method and the fiber.
Sebastian Metzner, Tamara Reuter, and Tino Hausotte
J. Sens. Sens. Syst., 9, 157–165, https://doi.org/10.5194/jsss-9-157-2020, https://doi.org/10.5194/jsss-9-157-2020, 2020
Short summary
Short summary
For the determination of the refractive index of the lubricant used in the sheet-bulk metal forming process, a lubricant thin-film thickness standard was developed which represents a continuous measuring range from 6 to 100 μm. To determine the refractive index, the thin-film thickness standard was measured with a coaxial interferometric measurement system in various thickness ranges. The results show changing optical properties with increasing layer thickness.
Giuseppe Dinardo, Laura Fabbiano, and Gaetano Vacca
J. Sens. Sens. Syst., 8, 269–283, https://doi.org/10.5194/jsss-8-269-2019, https://doi.org/10.5194/jsss-8-269-2019, 2019
Short summary
Short summary
The paper deals with the proposal of a new obstruction flowmeter (cone type) characterized by an improved geometry. Compared with a standard geometry cone flowmeter, the proposed one ensures better performance in terms of a higher discharge coefficient and less permanent pressure drops. Additionally, several experimental tests and numerical simulations have been performed to compare the overall performance granted by both flowmeters, endorsing the superiority of the proposed solution.
Jan Nitsche, Rolf Kumme, and Rainer Tutsch
J. Sens. Sens. Syst., 7, 577–586, https://doi.org/10.5194/jsss-7-577-2018, https://doi.org/10.5194/jsss-7-577-2018, 2018
Short summary
Short summary
Multi-component sensors for force and moment are commonly used in different areas as robotics, crash tests or material testing. The dynamic behaviour of such sensors may differ significantly from the static behaviour. To analyse the dynamic characteristics, we developed an improved test set-up for periodic excitation. It consists of an electrodynamic shaker, adapting elements and different acceleration references. The first experiments show good results for periodic excitation up to 1000 Hz.
Alejandro Moreno-Rangel, Tim Sharpe, Filbert Musau, and Gráinne McGill
J. Sens. Sens. Syst., 7, 373–388, https://doi.org/10.5194/jsss-7-373-2018, https://doi.org/10.5194/jsss-7-373-2018, 2018
Short summary
Short summary
We compared the temperature, relative humidity, total volatile organic compounds, carbon dioxide equivalents, and fine particulate matter measurements from Foobot to highly accurate instruments. The results suggest that Foobot offers a relatively low-cost and straightforward solution for identifying high pollutant exposures with potential health risks and for providing data at high granularity. Foobot characteristics make it a useful tool to evaluate occupant pollutant exposure.
Heinz Kohler, Binayak Ojha, Navas Illyaskutty, Ingo Hartmann, Christian Thiel, Konrad Eisinger, and Markus Dambacher
J. Sens. Sens. Syst., 7, 161–167, https://doi.org/10.5194/jsss-7-161-2018, https://doi.org/10.5194/jsss-7-161-2018, 2018
Short summary
Short summary
Wood-log- and wood-chip-fuelled low-power combustion systems emit high amounts of uncombusted gaseous components like CO and particulate matter. Emissions can be effectively reduced by optimized combustion process control using high-temperature gas sensors. The sensing behaviour of gas sensors for continuous analysis of uncombusted components and their long-term stability have been studied. The sensor signals are used to improve the combustion process control and to monitor combustion quality.
Gerry Hamdana, Maik Bertke, Lutz Doering, Thomas Frank, Uwe Brand, Hutomo Suryo Wasisto, and Erwin Peiner
J. Sens. Sens. Syst., 6, 121–133, https://doi.org/10.5194/jsss-6-121-2017, https://doi.org/10.5194/jsss-6-121-2017, 2017
Michal Schulz, Timna Orland, Alexander Mehlmann, Avner Rothschild, and Holger Fritze
J. Sens. Sens. Syst., 6, 107–119, https://doi.org/10.5194/jsss-6-107-2017, https://doi.org/10.5194/jsss-6-107-2017, 2017
Kerstin Schröder, Manfred Rothhardt, Wolfgang Ecke, Uwe Richter, André Sonntag, and Hartmut Bartelt
J. Sens. Sens. Syst., 6, 77–85, https://doi.org/10.5194/jsss-6-77-2017, https://doi.org/10.5194/jsss-6-77-2017, 2017
Short summary
Short summary
Fibre optic sensors are excellent tools for monitoring (with) high-voltage current collectors. They are easily integrated into the collector strip and specialized for detection of events like hits on the strip. The sensing system can be used in regular trains and make monitoring of the overhead contact line routine, which is done "along the way", helping not only to prevent accidents by small intruders, but also allowing the prediction of wear and is used to optimize service and repair cycles.
Franz Schubert, Michael Gollner, Jaroslaw Kita, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 5, 381–388, https://doi.org/10.5194/jsss-5-381-2016, https://doi.org/10.5194/jsss-5-381-2016, 2016
Short summary
Short summary
An FEM model is used to improve the sensor design of a Tian–Calvet calorimeter. By modifying the basic part of the sensor (a sensor disc based on low temperature co-fired ceramics), the sensitivity was increased by a factor of 3. The model was validated and the sensors were calibrated. Indium and tin samples were measured. The melting temperatures show a deviation of 0.2 K while the enthalpy was measured with a precision better than 1 %. The values for tin deviate by less than 2 % from literature.
Agnes Eydam, Gunnar Suchaneck, and Gerald Gerlach
J. Sens. Sens. Syst., 5, 165–170, https://doi.org/10.5194/jsss-5-165-2016, https://doi.org/10.5194/jsss-5-165-2016, 2016
Short summary
Short summary
Piezoelectric devices are characterized non-destructively to ensure their functionality. The material is heated by laser diodes. The resulting temperature changes lead to a pyroelectric current. Analytical and numerical finite element models describe the temperature distribution and the current in frequency and time domain. Modelling and experimental results are compared for piezoelectric plates and integrated sensors and actuators.
M. Klenner, T. Abels, C. Zech, A. Hülsmann, M. Schlechtweg, and O. Ambacher
J. Sens. Sens. Syst., 4, 125–131, https://doi.org/10.5194/jsss-4-125-2015, https://doi.org/10.5194/jsss-4-125-2015, 2015
A. Dickow and G. Feiertag
J. Sens. Sens. Syst., 4, 97–102, https://doi.org/10.5194/jsss-4-97-2015, https://doi.org/10.5194/jsss-4-97-2015, 2015
Short summary
Short summary
In this paper we present a systematic method to determine sets of close-to-optimal sensor calibration points for a polynomial approximation.For each set of calibration points a polynomial is used to fit the nonlinear sensor response to the calibration reference. The polynomial parameters are calculated using ordinary least square fit. In an experiment, barometric MEMS pressure sensors are calibrated using the proposed calibration method at several temperatures and pressures.
A. Henseleit, C. Pohl, Th. Bley, and E. Boschke
J. Sens. Sens. Syst., 4, 77–83, https://doi.org/10.5194/jsss-4-77-2015, https://doi.org/10.5194/jsss-4-77-2015, 2015
J. C. B. Fernandes and E. V. Heinke
J. Sens. Sens. Syst., 4, 53–61, https://doi.org/10.5194/jsss-4-53-2015, https://doi.org/10.5194/jsss-4-53-2015, 2015
Short summary
Short summary
All-solid-state reference electrodes were developed based on particles of graphite/silver/silver chloride synthesized by electroless deposition of metallic silver and silver chloride on graphite powder. These electrodes were not sensitive to abrasion, redox species, pH and high-pressure saturated steam, and were applied successfully in potentiometric cells to measure pH and potassium ions in a complex matrix by direct potentiometry and L-ascorbic acid by potentiometric titration.
S. Kishimoto, S. Akamatsu, H. Song, J. Nomoto, H. Makino, and T. Yamamoto
J. Sens. Sens. Syst., 3, 331–334, https://doi.org/10.5194/jsss-3-331-2014, https://doi.org/10.5194/jsss-3-331-2014, 2014
A. Lorek
J. Sens. Sens. Syst., 3, 177–185, https://doi.org/10.5194/jsss-3-177-2014, https://doi.org/10.5194/jsss-3-177-2014, 2014
T. Waber, M. Sax, W. Pahl, S. Stufler, A. Leidl, M. Günther, and G. Feiertag
J. Sens. Sens. Syst., 3, 167–175, https://doi.org/10.5194/jsss-3-167-2014, https://doi.org/10.5194/jsss-3-167-2014, 2014
Cited articles
Araguás-Araguás, L., Rozanski, K., Gonfiantini, R., and Louvat, D.: Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses, J. Hydrol., 168, 159–171, 1995.
Asbjornsen, H., Mora, G., and Helmers, M. J.: Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern U.S., Agr. Ecosyst. Environ., 121, 343–356, https://doi.org/10.1016/j.agee.2006.11.009, 2007.
Barnard, R. L., De Bello, F., Gilgen, A. K., and Buchmann, N.: The δ18O of root crown water best reflects source water δ18O in different types of herbaceous species, Rapid Commun. Mass. Sp., 20, 3799–3802, https://doi.org/10.1002/rcm.2778, 2006.
Barnes, C. J. and Allison, G. B.: Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen, J. Hydrol., 100, 143–176, https://doi.org/10.1016/0022-1694(88)90184-9, 1988.
Barrow, N. J. and Whelan, B. R.: A study of a method for displacing soil solution by centrifuging with an immiscible liquid, J. Environ. Qual., 9, 315–319, https://doi.org/10.2134/jeq1980.00472425000900020031x, 1980.
Batley, G. and Giles, M.: Solvent displacement of sediment interstitial waters before trace-metal analysis, Water Res., 13, 879–886, https://doi.org/10.1016/0043-1354(79)90223-9, 1979.
Brooks, J., R., Barnard, H., R., Coulombe, R., and McDonnell, J., J.: Ecohydrologic separation of water between trees and streams in a Mediterranean climate, Nat. Geosci., 3, 100–104, https://doi.org/10.1038/ngeo722, 2009.
Brunner, P., Li, H. T., Kinzelbach, W., Li, W. P., and Dong, X. G.: Extracting phreatic evaporation from remotely sensed maps of evapotranspiration, Water Resour. Res., 44, W08428, https://doi.org/10.1029/2007WR006063, 2008.
Butt, S., Ali, M., Fazil, M., and Latif, Z.: Seasonal variations in the isotopic composition of leaf and stem water from an arid region of Southeast Asia, Hydrolog. Sci. J., 55, 844–848, https://doi.org/10.1080/02626667.2010.487975, 2010.
Corbin, J. D., Thomsen, M. A., Dawson, T. E., and D'Antonio, C. M.: Summer water use by California coastal prairie grasses: Fog, drought, and community composition, Oecologia, 145, 511–521, https://doi.org/10.1007/s00442-005-0152-y, 2005.
Craig, H.: Standard for reporting concentrations of deuterium and oxygen-18 in natural waters, Science, 133, 1833–1834, https://doi.org/10.1126/science.133.3467.1833, 1961.
Dalton, F. N.: Plant root water extraction studies using stable isotopes, Plant Soil, 111, 217–221, 1988.
Dawson, T. E. and Ehleringer, J. R.: Streamside trees that do not use stream water, Nature, 350, 335–337, https://doi.org/10.1038/350335a0, 1991.
Dawson, T. E. and Ehleringer, J. R.: Isotopic enrichment of water in the "woody" tissues of plants: Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose, Geochim. Cosmochim. Ac., 57, 3487–3492, https://doi.org/10.1016/0016-7037(93)90554-A, 1993.
Dawson, T. E. and Pate, J. S.: Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: A stable isotope investigation, Oecologia, 107, 13–20, https://doi.org/10.1007/BF00582230, 1996.
Durand, J. L., Bariac, T., Ghesquière, M., Biron, P., Richard, P., Humphreys, M., and Zwierzykovski, Z.: Ranking of the depth of water extraction by individual grass plants, using natural 18O isotope abundance, Environ. Exp. Bot., 60, 137–144, https://doi.org/10.1016/j.envexpbot.2006.09.004, 2007.
Eggemeyer, K. D., Awada, T., Harvey, F. E., Wedin, D. A., Zhou, X., and Zanner, C. W.: Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland, Tree Physiol., 29, 157–169, https://doi.org/10.1093/treephys/tpn019, 2009.
Ehleringer, J. R. and Dawson, T. E.: Water uptake by plants: Perspectives from stable isotope composition, Plant Cell Environ., 15, 1073–1082, https://doi.org/10.1111/j.1365-3040.1992.tb01657.x, 1992.
Gat, J. R., Yakir, D., Goodfriend, G., Fritz, P., Trimborn, P., Lipp, J., Gev, I., Adar, E. and Waisel, Y.: Stable isotope composition of water in desert plants, Plant Soil, 298, 31–45, https://doi.org/10.1007/s11104-007-9321-6, 2007.
Gazis, C. and Feng, X.: A stable isotope study of soil water: Evidence for mixing and preferential flow paths, Geoderma, 119, 97–111, 2004.
Goebel, T. S. and Lascano, R. J.: System for high throughput water extraction from soil material for stable isotope analysis of water, Journal of Analytical Sciences, Methods and Instrumentation, 2, 203–207, https://doi.org/10.4236/jasmi.2012.24031, 2012.
Hsieh, J. C. C., Savin, S. M., Kelly, E. F., and Chadwick, O. A.: Measurement of soil-water δ18O values by direct equilibration with CO2, Geoderma, 82, 255–268, https://doi.org/10.1016/S0016-7061(97)00104-3, 1998.
Ingraham, N. L. and Shadel, C.: A comparison of the toluene distillation and vacuum/heat methods for extracting soil water for stable isotopic analysis, J. Hydrol., 140, 371–387, 1992.
Kendall, C. and McDonnell, J. J. (Eds.): Isotope tracers in catchment hydrology, First edition, Elsevier, Amsterdam, the Netherlands, 1998.
Koehler, G., Wassenaar, L. I., and Hendry, M. J.: An automated technique for measuring δD and δ18O values of porewater by direct CO2 and H2 equilibration, Anal. Chem., 72, 5659–5664, https://doi.org/10.1021/ac000498n, 2000.
Koeniger, P., Marshall, J. D., Link, T., and Mulch, A.: An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry, Rapid Commun. Mass. Sp., 25, 3041–3048, https://doi.org/10.1002/rcm.5198, 2011.
Leen, J. B., Berman, E. S. F., Liebson, L., and Gupta, M.: Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes, Rev. Sci. Instrum., 83, 044305, https://doi.org/10.1063/1.4704843, 2012.
LGR: Los Gatos Research, http://www.lgrinc.com/, last access: 5 February 2013.
Lin, G. H. and Sternberg, L. da S. L.: Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants, in: Stable isotopes and plant carbon-water relations, edited by: Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., Academic, San Diego, CA, USA, 497–510, 1993.
Lis, G., Wassenaar, L. I., and Hendry, M. J.: High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples, Anal. Chem., 80, 287–293, https://doi.org/10.1021/ac701716q, 2008.
Liu, W., Liu, W., Li, P., Duan, W., and Li, H.: Dry season water uptake by two dominant canopy tree species in a tropical seasonal rainforest of Xishuangbanna, SW China, Agr. Forest Meteorol., 150, 380–388, https://doi.org/10.1016/j.agrformet.2009.12.006, 2010.
Liu, Y., Xu, Z., Duffy, R., Chen, W., An, S., Liu, S., and Liu, F.: Analyzing relationships among water uptake patterns, rootlet biomass distribution and soil water content profile in a subalpine shrubland using water isotopes, Eur. J. Soil Biol., 47, 380–386, https://doi.org/10.1016/j.ejsobi.2011.07.012, 2011.
McConville, C., Kalin, R. M., and Flood, D.: Direct equilibration of soil water for δ18O analysis and its application to tracer studies, Rapid Commun. Mass Sp., 13, 1339–1345, https://doi.org/10.1002/(SICI)1097-0231(19990715)13:13<1339::AID-RCM559>3.0.CO;2-N, 1999.
Mubarak, A. and Olsen, R.: Immiscible displacement of soil solution by centrifugation, Soil Sci. Soc. Am. J., 40, 329–331, 1976.
Newman, B., Tanweer, A., and Kurttas, T.: IAEA Standard Operating Procedure for the Liquid-Water Stable Isotope Analyser: available at: http://www-naweb.iaea.org/napc/ih/documents/other/laser_procedure_rev12.PDF, last access: 10 April 2012.
Nippert, J. B. and Knapp, A. K.: Linking water uptake with rooting patterns in grassland species, Oecologia, 153, 261–272, https://doi.org/10.1007/s00442-007-0745-8, 2007.
Penna, D., Stenni, B., Šanda, M., Wrede, S., Bogaard, T. A., Gobbi, A., Borga, M., Fischer, B. M. C., Bonazza, M., and Chárová, Z.: On the reproducibility and repeatability of laser absorption spectroscopy measurements for δ2H and δ18O isotopic analysis, Hydrol. Earth Syst. Sci., 14, 1551–1566, https://doi.org/10.5194/hess-14-1551-2010, 2010.
Peters, L. I. and Yakir, D.: A direct and rapid leaf water extraction method for isotopic analysis, Rapid Commun. Mass Sp., 22, 2929–2936, https://doi.org/10.1002/rcm.3692, 2008.
Phillips, D. L. and Gregg, J. W.: Source partitioning using stable isotopes: coping with too many sources, Oecologia, 136, 261–269, https://doi.org/10.1007/s00442-003-1218-3, 2003.
Revesz, K. and Woods, P. H.: A method to extract soil water for stable isotope analysis, J. Hydrol., 115, 397–406, 1990.
Rossatto, D. R., Ramos Silva, L. de C., Villalobos-Vega, R., Sternberg, L. da S. L., and Franco, A. C.: Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna, Environ. Exp. Bot., 77, 259–266, https://doi.org/10.1016/j.envexpbot.2011.11.025, 2012.
Rossatto, D. R., Sternberg, L. da S. L., and Franco, A. C.: The partitioning of water uptake between growth forms in a Neotropical savanna: Do herbs exploit a third water source niche?, Plant Biol., 15, 84–92, https://doi.org/10.1111/j.1438-8677.2012.00618.x, 2013.
Rothfuss, Y., Biron, P., Braud, I., Canale, L., Durand, J.-L., Gaudet, J.-P., Richard, P., Vauclin, M., and Bariac, T.: Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions, Hydrol. Process., 24, 3177–3194, https://doi.org/10.1002/hyp.7743, 2010.
Rothfuss, Y., Braud, I., Le Moine, N., Biron, P., Durand, J.-L., Vauclin, M., and Bariac, T.: Factors controlling the isotopic partitioning between soil evaporation and plant transpiration: Assessment using a multi-objective calibration of SiSPAT-Isotope under controlled conditions, J. Hydrol., 442–443, 75–88, https://doi.org/10.1016/j.jhydrol.2012.03.041, 2012.
Sala, O. E., Jackson, R. B., Mooney, H. A., and Howarth, R. W. (Eds.): Methods in Ecosystem Science, Springer, New York, USA, 2000.
Schultz, N. M., Griffis, T. J., Lee, X., and Baker, J. M.: Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water, Rapid Commun. Mass Sp., 25, 3360–3368, https://doi.org/10.1002/rcm.5236, 2011.
Scrimgeour, C. M.: Measurement of plant and soil water isotope composition by direct equilibration methods, J. Hydrol., 172, 261–274, https://doi.org/10.1016/0022-1694(95)02716-3, 1995.
Song, X., Wang, S., Xiao, G., Wang, Z., Liu, X., and Wang, P.: A study of soil water movement combining soil water potential with stable isotopes at two sites of shallow groundwater areas in the North China Plain, Hydrol. Process., 23, 1376–1388, https://doi.org/10.1002/hyp.7267, 2009.
Stratton, L. C., Goldstein, G., and Meinzer, F. C.: Temporal and spatial partitioning of water resources among eight woody species in a Hawaiian dry forest, Oecologia, 124, 309–317, https://doi.org/10.1007/s004420000384, 2000.
Takahashi, K.: Oxygen isotope ratios between soil water and stem water of trees in pot experiments, Ecol. Res., 13, 1–5, https://doi.org/10.1046/j.1440-1703.1998.00240.x, 1998.
Thorburn, P. J. and Ehleringer, J. R.: Root water uptake of field-growing plants indicated by measurements of natural-abundance deuterium, Plant Soil, 177, 225–233, 1995.
Thorburn, P. J., Walker, G. R., and Brunel, J.-P: Extraction of water from Eucalyptus trees for analysis of deuterium and oxygen-18: laboratory and field techniques, Plant Cell Environ., 16, 269–277, https://doi.org/10.1111/j.1365-3040.1993.tb00869.x, 1993.
Unkovich, M., Pate, J., McNeill, A., and Gibbs, J.: Stable isotope techniques in the study of biological processes and functioning of ecosystems, Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001.
Vendramini, P. F. and Sternberg, L. da S. L.: A faster plant stem-water extraction method, Rapid Commun. Mass Sp., 21, 164–168, https://doi.org/10.1002/rcm.2826, 2007.
Walker, C. D. and Richardson, S. B.: The use of stable isotopes of water in characterising the source of water in vegetation, Chem. Geol.: Isotope Geoscience section, 94, 145–158, 1991.
Walker, G. R., Woods, P. H., and Allison, G. B.: Interlaboratory comparison of methods to determine the stable isotope composition of soil water, Chem. Geol., 111, 297–306, 1994.
Walter, Z.-L. and Morio, I.: Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species, Plant Prod. Sci., 8, 454–460, 2005.
Wang, P., Song, X., Han, D., Zhang, Y., and Liu, X.: A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China, Agr. Water Manage., 97, 475–482, 2010.
Wang, P., Song, X., Han, D., Zhang, Y., and Zhang, B.: Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation, Agr. Water Manage., 105, 32–37, https://doi.org/10.1016/j.agwat.2011.12.024, 2012.
Wang, X. F. and Yakir, D.: Using stable isotopes of water in evapotranspiration studies, Hydrol. Process., 14, 1407–1421, 2000.
Wassenaar, L. I., Hendry, M. J., Chostner, V. L., and Lis, G. P.: High resolution pore water δ2H and δ18O measurements by H2O (liquid)-H2O (vapor) equilibration laser spectroscopy, Environ. Sci. Technol., 42, 9262–9267, 2008.
Wershaw, R. L., Friedman, I., Heller, S. J., and Frank, P. A.: Hydrogen isotopic fractionation of water passing through trees, in: Advances in organic geochemistry, International series of monographs on earth sciences, edited by: Hobson, G. D., Speers, G. C., and Inderson, D. E., 32, Pergamon Press, New York, USA, 55–67, 1966.
West, A. G., Patrickson, S. J., and Ehleringer, J. R.: Water extraction times for plant and soil materials used in stable isotope analysis, Rapid Commun. Mass Sp., 20, 1317–1321, https://doi.org/10.1002/rcm.2456, 2006.
West, A. G., Goldsmith, G. R., Brooks, P. D., and Dawson, T. E.: Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters, Rapid Commun. Mass Sp., 24, 1948–1954, https://doi.org/10.1002/rcm.4597, 2010.
White, J. W. C., Cook, E. R., Lawrence, J. R., and Wallace S. B.: The D/H ratios of sap in trees: Implications for water sources and tree ring D/H ratios, Geochim. Cosmochim. Ac., 49, 237–246, https://doi.org/10.1016/0016-7037(85)90207-8, 1985.
Williams, D. G. and Ehleringer, J. R.: Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands, Ecol. Monogr., 70, 517–537, https://doi.org/10.2307/2657185, 2000.
Yang, H., Auerswald, K., Bai, Y., and Han, X.: Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China, Plant Soil, 340, 303–313, https://doi.org/10.1007/s11104-010-0307-4, 2011.
Zegada-Lizarazu, W. and Iijima, M.: Hydrogen stable isotope analysis of water acquisition ability of deep roots and hydraulic lift in sixteen food crop species, Plant. Prod. Sci., 7, 427–434, https://doi.org/10.1626/pps.7.427, 2004.