Articles | Volume 7, issue 1
https://doi.org/10.5194/jsss-7-359-2018
https://doi.org/10.5194/jsss-7-359-2018
Regular research article
 | 
09 May 2018
Regular research article |  | 09 May 2018

Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0

Andreas Schütze, Nikolai Helwig, and Tizian Schneider

Related authors

Influence of measurement uncertainty on machine learning results demonstrated for a smart gas sensor
Tanja Dorst, Tizian Schneider, Sascha Eichstädt, and Andreas Schütze
J. Sens. Sens. Syst., 12, 45–60, https://doi.org/10.5194/jsss-12-45-2023,https://doi.org/10.5194/jsss-12-45-2023, 2023
Short summary
Influence of synchronization within a sensor network on machine learning results
Tanja Dorst, Yannick Robin, Sascha Eichstädt, Andreas Schütze, and Tizian Schneider
J. Sens. Sens. Syst., 10, 233–245, https://doi.org/10.5194/jsss-10-233-2021,https://doi.org/10.5194/jsss-10-233-2021, 2021
Short summary
Random gas mixtures for efficient gas sensor calibration
Tobias Baur, Manuel Bastuck, Caroline Schultealbert, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 411–424, https://doi.org/10.5194/jsss-9-411-2020,https://doi.org/10.5194/jsss-9-411-2020, 2020
Short summary
Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation – sensitivity and selectivity
Caroline Schultealbert, Iklim Uzun, Tobias Baur, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 283–292, https://doi.org/10.5194/jsss-9-283-2020,https://doi.org/10.5194/jsss-9-283-2020, 2020
Short summary
Enabling a new method of dynamic field-effect gas sensor operation through lithium-doped tungsten oxide
Marius Rodner, Manuel Bastuck, Andreas Schütze, Mike Andersson, Joni Huotari, Jarkko Puustinen, Jyrki Lappalainen, and Tilman Sauerwald
J. Sens. Sens. Syst., 8, 261–267, https://doi.org/10.5194/jsss-8-261-2019,https://doi.org/10.5194/jsss-8-261-2019, 2019
Short summary

Related subject area

Measurement theory, uncertainty and modeling of measurements: Measurement uncertainty
Metrological assessment of a robotic total station for use in post-earthquake emergency conditions
Giulio D'Emilia and Emanuela Natale
J. Sens. Sens. Syst., 12, 187–195, https://doi.org/10.5194/jsss-12-187-2023,https://doi.org/10.5194/jsss-12-187-2023, 2023
Short summary
Approximate sequential Bayesian filtering to estimate 222Rn emanation from 226Ra sources using spectral time series
Florian Mertes, Stefan Röttger, and Annette Röttger
J. Sens. Sens. Syst., 12, 147–161, https://doi.org/10.5194/jsss-12-147-2023,https://doi.org/10.5194/jsss-12-147-2023, 2023
Short summary
Evaluation of precision, accuracy and threshold for the design of vibrotactile feedback in eye tracking applications
Anke Fischer, Thomas M. Wendt, Lukas Stiglmeier, Philipp Gawron, and Kristof Van Laerhoven
J. Sens. Sens. Syst., 12, 103–109, https://doi.org/10.5194/jsss-12-103-2023,https://doi.org/10.5194/jsss-12-103-2023, 2023
Short summary
Influence of measurement uncertainty on machine learning results demonstrated for a smart gas sensor
Tanja Dorst, Tizian Schneider, Sascha Eichstädt, and Andreas Schütze
J. Sens. Sens. Syst., 12, 45–60, https://doi.org/10.5194/jsss-12-45-2023,https://doi.org/10.5194/jsss-12-45-2023, 2023
Short summary
Towards efficient application-dependent dimensional measurements with computed tomography: optimized reduction of measurement duration using continuous scan mode: experimental investigations
Christian Orgeldinger, Florian Wohlgemuth, Andreas Michael Müller, and Tino Hausotte
J. Sens. Sens. Syst., 11, 219–223, https://doi.org/10.5194/jsss-11-219-2022,https://doi.org/10.5194/jsss-11-219-2022, 2022
Short summary

Cited articles

Akmal Johar, M. and König, A.: Case Study of an Intelligent AMR Sensor System with Self-x Properties, in: Soft Computing in Industrial Applications, edited by: Gaspar-Cunha, A., Takahashi, R., Schäfer, G., and Costa, L., Springer, Berlin Heidelberg, 337–346, https://doi.org/10.1007/978-3-642-20505-7_30, 2011. 
Arnold, H.: Kommentar Industrie 4.0: Ohne Sensorsysteme geht nichts, available at: http://www.elektroniknet.de/messen-testen/sonstiges/artikel/110776/ (last access: 10 March 2018), 2014. 
Bastuck, M., Schütze, A., and Sauerwald, T.: A new approach to self-monitoring of amperometric oxygen sensors, Sensors and Actuators B 214, 218–224, https://doi.org/10.1016/j.snb.2015.02.116, 2015. 
Baur, T., Schütze, A., and Sauerwald, T.: Optimierung des temperaturzyklischen Betriebs von Halbleitergassensoren, Tech. Mess., 82, 187–195, https://doi.org/10.1515/teme-2014-0007, 2015. 
Download
Short summary
“Industrie 4.0” or the Industrial Internet of Things (IIoT) describe the current (r)evolution in industrial automation and control. This is fundamentally based on smart sensors, which generate data and allow further functionality from self-monitoring and self-configuration to condition monitoring of complex processes. The paper reviews the development of sensor technology over the last 2 centuries and highlights some of the potential that can be achieved with smart sensors and data analysis.