Articles | Volume 12, issue 1
https://doi.org/10.5194/jsss-12-93-2023
https://doi.org/10.5194/jsss-12-93-2023
Regular research article
 | 
20 Mar 2023
Regular research article |  | 20 Mar 2023

Assisting the automated analysis of chemical–analytical measurements in spirits using validated algorithms and an intuitive user interface

Andreas T. Grasskamp, Satnam Singh, Helen Haug, and Tilman Sauerwald

Related authors

Development of a gas chromatography system coupled to a metal-oxide semiconductor (MOS) sensor, with compensation of the temperature effects on the column for the measurement of ethene
Maximilian Koehne, Christopher Schmidt, Satnam Singh, Andreas Grasskamp, Tilman Sauerwald, and Gina Zeh
J. Sens. Sens. Syst., 12, 215–223, https://doi.org/10.5194/jsss-12-215-2023,https://doi.org/10.5194/jsss-12-215-2023, 2023
Short summary

Related subject area

Measurement systems: Sensor signal processing and electronics
A portable biosensor for simultaneous diagnosis of TNF-α and IL-1β in saliva biomarkers using twin electronic devices
Majid Monajjemi, Fatemeh Mollaamin, Motahareh Dehghandar, Sara Shahriari, Parisa Latifi, and Samira Mohammadi
J. Sens. Sens. Syst., 13, 245–261, https://doi.org/10.5194/jsss-13-245-2024,https://doi.org/10.5194/jsss-13-245-2024, 2024
Short summary
Extraction of nanometer-scale displacements from noisy signals at frequencies down to 1 mHz obtained by differential laser Doppler vibrometry
Dhyan Kohlmann, Marvin Schewe, Hendrik Wulfmeier, Christian Rembe, and Holger Fritze
J. Sens. Sens. Syst., 13, 167–177, https://doi.org/10.5194/jsss-13-167-2024,https://doi.org/10.5194/jsss-13-167-2024, 2024
Short summary
Simple in-system control of microphone sensitivities in an array
Artem Ivanov
J. Sens. Sens. Syst., 13, 81–88, https://doi.org/10.5194/jsss-13-81-2024,https://doi.org/10.5194/jsss-13-81-2024, 2024
Short summary
Wireless surface acoustic wave resonator sensors: fast Fourier transform, empirical mode decomposition or wavelets for the frequency estimation in one shot?
Angel Scipioni, Pascal Rischette, and Agnès Santori
J. Sens. Sens. Syst., 12, 247–260, https://doi.org/10.5194/jsss-12-247-2023,https://doi.org/10.5194/jsss-12-247-2023, 2023
Short summary
Ultrasonic measurement setup for monitoring pre-thawing stages of food
Ruchi Jha, Walter Lang, and Reiner Jedermann
J. Sens. Sens. Syst., 12, 133–139, https://doi.org/10.5194/jsss-12-133-2023,https://doi.org/10.5194/jsss-12-133-2023, 2023
Short summary

Cited articles

Baltussen, E., Sandra, P., David, F., and Cramers, C.: Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles, J. Microcolumn Sep., 11, 737–747, https://doi.org/10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4, 1999. 
Behrends, V., Tredwell, G. D., and Bundy, J. G.: A software complement to AMDIS for processing GC-MS metabolomic data, Anal. Biochem., 415, 206–208, https://doi.org/10.1016/j.ab.2011.04.009, 2011. 
Biller, J. E. and Biemann, K.: Reconstructed Mass Spectra, A Novel Approach for the Utilization of Gas Chromatograph—Mass Spectrometer Data, Anal. Lett., 7, 515–528, https://doi.org/10.1080/00032717408058783, 1974. 
Broeckling, C. D., Reddy, I. R., Duran, A. L., Zhao, X., and Sumner, L. W.: Met-IDEA: Data extraction tool for mass spectrometry-based metabolomics, Anal. Chem., 78, 4334–4341, https://doi.org/10.1021/ac0521596, 2006. 
Câmara, J. S., Marques, J. C., Perestrelo, R. M., Rodrigues, F., Oliveira, L., Andrade, P., and Caldeira, M.: Comparative study of the whisky aroma profile based on headspace solid phase microextraction using different fibre coatings, J. Chromatogr. A, 1150, 198–207, https://doi.org/10.1016/j.chroma.2006.09.014, 2007. 
Download
Short summary
In this work, we have developed and validated a semi-automatic approach that greatly reduces the amount of interaction and effort needed for analyzing samples via gas chromatography–mass spectrometry. Further, unlike many other approaches, our developed tool is accessible to the novice and does not require any programming experience. Using whisky as an example substance, we show how the analysis method compares to conventional software, and we validate our approach against that.