Articles | Volume 7, issue 2
https://doi.org/10.5194/jsss-7-535-2018
https://doi.org/10.5194/jsss-7-535-2018
Regular research article
 | 
11 Oct 2018
Regular research article |  | 11 Oct 2018

Gas sensors for climate research

Louisa Scholz, Alvaro Ortiz Perez, Benedikt Bierer, Jürgen Wöllenstein, and Stefan Palzer

Related authors

Compact silicon-based attenuated total reflection (ATR) sensor module for liquid analysis
Armin Lambrecht, Carsten Bolwien, Hendrik Fuhr, Gerd Sulz, Annett Isserstedt-Trinke, André Magi, Steffen Biermann, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 12, 123–131, https://doi.org/10.5194/jsss-12-123-2023,https://doi.org/10.5194/jsss-12-123-2023, 2023
Short summary
Real-time active-gas imaging of small gas leaks
Max Bergau, Thomas Strahl, Benjamin Scherer, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 12, 61–68, https://doi.org/10.5194/jsss-12-61-2023,https://doi.org/10.5194/jsss-12-61-2023, 2023
Short summary
Resonant photoacoustic cells for laser-based methane detection
Katrin Schmitt, Mara Sendelbach, Christian Weber, Jürgen Wöllenstein, and Thomas Strahl
J. Sens. Sens. Syst., 12, 37–44, https://doi.org/10.5194/jsss-12-37-2023,https://doi.org/10.5194/jsss-12-37-2023, 2023
Short summary
Low-power sensor node for the detection of methane and propane
Benedikt Bierer, Dario Grgić, Olena Yurchenko, Laura Engel, Hans-Fridtjof Pernau, Martin Jägle, Leonhard Reindl, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 10, 185–191, https://doi.org/10.5194/jsss-10-185-2021,https://doi.org/10.5194/jsss-10-185-2021, 2021
Short summary
Impact of particle size and morphology of cobalt oxide on the thermal response to methane examined by thermal analysis
Olena Yurchenko, Hans-Fridtjof Pernau, Laura Engel, Benedikt Bierer, Martin Jägle, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 10, 37–42, https://doi.org/10.5194/jsss-10-37-2021,https://doi.org/10.5194/jsss-10-37-2021, 2021
Short summary

Related subject area

Applications: Environmental monitoring
The River Runner: a low-cost sensor prototype for continuous dissolved greenhouse gas measurements
Martin Dalvai Ragnoli and Gabriel Singer
J. Sens. Sens. Syst., 13, 41–61, https://doi.org/10.5194/jsss-13-41-2024,https://doi.org/10.5194/jsss-13-41-2024, 2024
Short summary
Laboratory robustness validation of a humidity sensor system for the condition monitoring of grease-lubricated components for railway applications
Krisztián Dubek, Christoph Schneidhofer, Nicole Dörr, and Ulrich Schmid
J. Sens. Sens. Syst., 13, 9–23, https://doi.org/10.5194/jsss-13-9-2024,https://doi.org/10.5194/jsss-13-9-2024, 2024
Short summary
An in-hive soft sensor based on phase space features for Varroa infestation level estimation and treatment need detection
Andreas König
J. Sens. Sens. Syst., 11, 29–40, https://doi.org/10.5194/jsss-11-29-2022,https://doi.org/10.5194/jsss-11-29-2022, 2022
Short summary
A classification technique of civil objects by artificial neural networks using estimation of entropy on synthetic aperture radar images
Anton V. Kvasnov and Vyacheslav P. Shkodyrev
J. Sens. Sens. Syst., 10, 127–134, https://doi.org/10.5194/jsss-10-127-2021,https://doi.org/10.5194/jsss-10-127-2021, 2021
Short summary
Measure particulate matter by yourself: data-quality monitoring in a citizen science project
Aboubakr Benabbas, Martin Geißelbrecht, Gabriel Martin Nikol, Lukas Mahr, Daniel Nähr, Simon Steuer, Gabriele Wiesemann, Thomas Müller, Daniela Nicklas, and Thomas Wieland
J. Sens. Sens. Syst., 8, 317–328, https://doi.org/10.5194/jsss-8-317-2019,https://doi.org/10.5194/jsss-8-317-2019, 2019

Cited articles

Bernhardt, R., Santiago, G. D., Slezak, V. B., Peuriot, A., and González, M. G.: Differential, LED-excited, resonant NO2 photoacoustic system, Sensor. Actuat. B-Chem., 150, 513–516, https://doi.org/10.1016/j.snb.2010.09.007, 2010. 
Bierer, B., Nägele, H. J., Perez, A. O., Wöllenstein, J., Kress, P., Lemmer, A., and Palzer, S.: Real-Time Gas Quality Data for On-Demand Production of Biogas, Chem. Eng. Technol., 41, 696–701, https://doi.org/10.1002/ceat.201700394, 2018. 
Bouwman, A. F. (Ed.): Approaches to Scaling of Trace Gas Fluxes in Ecosystems, 1st ed., Elsevier Science, 1999. 
Chen, T., Su, G., and Yuan, H.: In situ gas filter correlation: Photoacoustic CO detection method for fire warning, Sensors Actuat. B, 109, 233–237, https://doi.org/10.1016/j.snb.2004.12.055, 2005. 
Elia, A., Lugarà, P. M., di Franco, C., and Spagnolo, V.: Photoacoustic techniques for trace gas sensing based on semiconductor laser sources, Sensors, 9, 9616–9628, https://doi.org/10.3390/s91209616, 2009. 
Download
Short summary
The availability of datasets providing information on the spatial and temporal evolution of greenhouse gas concentrations is of high relevance for the development of reliable climate simulations. Here we present a novel, non-dispersive infrared absorption spectroscopy (NDIR) device that can possibly act as a central building block of a sensor node to provide high-quality data of carbon dioxide (CO2) concentrations under field conditions at a high measurement rate.