Articles | Volume 10, issue 2
https://doi.org/10.5194/jsss-10-271-2021
https://doi.org/10.5194/jsss-10-271-2021
Regular research article
 | 
19 Nov 2021
Regular research article |  | 19 Nov 2021

High-temperature behavior of housed piezoelectric resonators based on CTGS

Michal Schulz, Rezvan Ghanavati, Fabian Kohler, Jürgen Wilde, and Holger Fritze

Related authors

Assembly and interconnection technology for high-temperature bulk acoustic wave resonators
Fabian Kohler, Monika Farina, Michal Schulz, Holger Fritze, and Jürgen Wilde
J. Sens. Sens. Syst., 11, 83–97, https://doi.org/10.5194/jsss-11-83-2022,https://doi.org/10.5194/jsss-11-83-2022, 2022
Short summary
Oxygen transport in epitaxial SrTiO3/SrTi1 − xFexO3 multilayer stacks
Michal Schulz, Timna Orland, Alexander Mehlmann, Avner Rothschild, and Holger Fritze
J. Sens. Sens. Syst., 6, 107–119, https://doi.org/10.5194/jsss-6-107-2017,https://doi.org/10.5194/jsss-6-107-2017, 2017
Correlation of BAW and SAW properties of langasite at elevated temperatures
M. Schulz, E. Mayer, I. Shrena, D. Eisele, M. Schmitt, L. M. Reindl, and H. Fritze
J. Sens. Sens. Syst., 4, 331–340, https://doi.org/10.5194/jsss-4-331-2015,https://doi.org/10.5194/jsss-4-331-2015, 2015

Related subject area

Sensor technologies: Characterization and testing
Methods to investigate the temperature distribution of heated ceramic gas sensors for high-temperature applications
Thomas Wöhrl, Julia Herrmann, Jaroslaw Kita, Ralf Moos, and Gunter Hagen
J. Sens. Sens. Syst., 12, 205–214, https://doi.org/10.5194/jsss-12-205-2023,https://doi.org/10.5194/jsss-12-205-2023, 2023
Short summary
Gauge to simultaneously determine the electrical conductivity, the Hall constant, and the Seebeck coefficient up to 800 °C
Robin Werner, Jaroslaw Kita, Michael Gollner, Florian Linseis, and Ralf Moos
J. Sens. Sens. Syst., 12, 69–84, https://doi.org/10.5194/jsss-12-69-2023,https://doi.org/10.5194/jsss-12-69-2023, 2023
Short summary
Precise characterization of VCSEL in the 1550 nm band having a wavelength tuning range of 12 nm within 10 µs as light sources for fast sensor systems
Roman Kruglov, Gregor Saur, and Rainer Engelbrecht
J. Sens. Sens. Syst., 11, 161–169, https://doi.org/10.5194/jsss-11-161-2022,https://doi.org/10.5194/jsss-11-161-2022, 2022
Short summary
An algorithmic method for the identification of wood species and the classification of post-consumer wood using fluorescence lifetime imaging microscopy
Nina Leiter, Maximilian Wohlschläger, Martin Versen, and Christian Laforsch
J. Sens. Sens. Syst., 11, 129–136, https://doi.org/10.5194/jsss-11-129-2022,https://doi.org/10.5194/jsss-11-129-2022, 2022
Short summary
Investigation of a metrological atomic force microscope system with a combined cantilever position, bending and torsion detection system
Yiting Wu, Elisa Wirthmann, Ute Klöpzig, and Tino Hausotte
J. Sens. Sens. Syst., 10, 171–177, https://doi.org/10.5194/jsss-10-171-2021,https://doi.org/10.5194/jsss-10-171-2021, 2021
Short summary

Cited articles

Bruckner, G., Hauser, R., Stelzer, A., Maurer, L., Reindl, L., Teichmann, R., and Biniasch, J.: High temperature stable SAW based tagging system for identifying a pressure sensor, IEEE International Frequency COntrol Symposion and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, 4-8 May 2003, Tampa, FL, USA, 942–947, 2003. a
CRYSTRAN: Sapphire IR  Transmission data table, Crystran Ltd. [data set], available at: https://www.crystran.co.uk/optical-materials/sapphire-al2o3 (last access: 2 June 2021), 2019. a
Edler, F.: Precise temperature measurement above 1000 C using thermocouples, Proc. Estonian Acad. Sci. Eng., 13, 310–319, 2007. a
Fachberger, R., Bruckner, G., Knoll, G., Hauser, R., Biniasch J., and Reindl, L.: Applicability of LiNbO3, langasite and GaPO4 in high temperature SAW sensors operating at radio frequencies, in: IEEE T. Ultrason. Ferroelect. Freq. Control, 51, 1427–1431, 2004. a
Fritze, H.: High-temperature bulk acoustic wave sensors, Meas. Sci. Technol., 22, 012002, https://doi.org/10.1088/0957-0233/22/1/012002, 2011. a, b, c, d, e
Short summary
Temperature sensors based on piezoelectric devices enable precise measurement of temperature changes in harsh environments such as high temperatures or aggressive atmospheres. In the case of this device, the change in the temperature is detected by means of the changing resonance frequency of the sensor. Here a sensor device based on catangasite (an isomorph of quartz) is presented. We discuss its behavior at elevated temperatures and confirm that it can successfully operate up to 1030 °C.