Articles | Volume 14, issue 2
https://doi.org/10.5194/jsss-14-119-2025
https://doi.org/10.5194/jsss-14-119-2025
Regular research article
 | 
04 Jul 2025
Regular research article |  | 04 Jul 2025

Domain shifts in industrial condition monitoring: a comparative analysis of automated machine learning models

Payman Goodarzi, Andreas Schütze, and Tizian Schneider

Related authors

Influence of measurement uncertainty on machine learning results demonstrated for a smart gas sensor
Tanja Dorst, Tizian Schneider, Sascha Eichstädt, and Andreas Schütze
J. Sens. Sens. Syst., 12, 45–60, https://doi.org/10.5194/jsss-12-45-2023,https://doi.org/10.5194/jsss-12-45-2023, 2023
Short summary
Influence of synchronization within a sensor network on machine learning results
Tanja Dorst, Yannick Robin, Sascha Eichstädt, Andreas Schütze, and Tizian Schneider
J. Sens. Sens. Syst., 10, 233–245, https://doi.org/10.5194/jsss-10-233-2021,https://doi.org/10.5194/jsss-10-233-2021, 2021
Short summary
Random gas mixtures for efficient gas sensor calibration
Tobias Baur, Manuel Bastuck, Caroline Schultealbert, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 411–424, https://doi.org/10.5194/jsss-9-411-2020,https://doi.org/10.5194/jsss-9-411-2020, 2020
Short summary
Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation – sensitivity and selectivity
Caroline Schultealbert, Iklim Uzun, Tobias Baur, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 283–292, https://doi.org/10.5194/jsss-9-283-2020,https://doi.org/10.5194/jsss-9-283-2020, 2020
Short summary
Enabling a new method of dynamic field-effect gas sensor operation through lithium-doped tungsten oxide
Marius Rodner, Manuel Bastuck, Andreas Schütze, Mike Andersson, Joni Huotari, Jarkko Puustinen, Jyrki Lappalainen, and Tilman Sauerwald
J. Sens. Sens. Syst., 8, 261–267, https://doi.org/10.5194/jsss-8-261-2019,https://doi.org/10.5194/jsss-8-261-2019, 2019
Short summary

Related subject area

Measurement systems: Sensor signal processing and electronics
Suppression of polarization random noise in a two-dimensional force sensorbased on random forest
Jian Liu
J. Sens. Sens. Syst., 14, 1–11, https://doi.org/10.5194/jsss-14-1-2025,https://doi.org/10.5194/jsss-14-1-2025, 2025
Short summary
A portable biosensor for simultaneous diagnosis of TNF-α and IL-1β in saliva biomarkers using twin electronic devices
Majid Monajjemi, Fatemeh Mollaamin, Motahareh Dehghandar, Sara Shahriari, Parisa Latifi, and Samira Mohammadi
J. Sens. Sens. Syst., 13, 245–261, https://doi.org/10.5194/jsss-13-245-2024,https://doi.org/10.5194/jsss-13-245-2024, 2024
Short summary
Extraction of nanometer-scale displacements from noisy signals at frequencies down to 1 mHz obtained by differential laser Doppler vibrometry
Dhyan Kohlmann, Marvin Schewe, Hendrik Wulfmeier, Christian Rembe, and Holger Fritze
J. Sens. Sens. Syst., 13, 167–177, https://doi.org/10.5194/jsss-13-167-2024,https://doi.org/10.5194/jsss-13-167-2024, 2024
Short summary
Simple in-system control of microphone sensitivities in an array
Artem Ivanov
J. Sens. Sens. Syst., 13, 81–88, https://doi.org/10.5194/jsss-13-81-2024,https://doi.org/10.5194/jsss-13-81-2024, 2024
Short summary
Wireless surface acoustic wave resonator sensors: fast Fourier transform, empirical mode decomposition or wavelets for the frequency estimation in one shot?
Angel Scipioni, Pascal Rischette, and Agnès Santori
J. Sens. Sens. Syst., 12, 247–260, https://doi.org/10.5194/jsss-12-247-2023,https://doi.org/10.5194/jsss-12-247-2023, 2023
Short summary

Cited articles

Atanov, A., Filatov, A., Yeo, T., Sohmshetty, A., and Zamir, A.: Task discovery: Finding the tasks that neural networks generalize on, Adv. Neur. In., 35, 15702–15717, 2022. a
Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., and Inman, D. J.: A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications, Mech. Syst. Signal Pr., 147, 107077, https://doi.org/10.1016/j.ymssp.2020.107077, 2021. a, b, c
Bastuck, M., Leidinger, M., Sauerwald, T., and Schütze, A.: Improved quantification of naphthalene using non-linear Partial Least Squares Regression, ISOEN, arXiv [preprint], https://doi.org/10.48550/arXiv.1507.05834, 21 July 2015. a
Bellman, R. E.: Adaptive Control Processes, Princeton University Press, Princeton, ISBN 9781400874668, https://doi.org/10.1515/9781400874668, 1961. a
Buckley, T., Ghosh, B., and Pakrashi, V.: A Feature Extraction & Selection Benchmark for Structural Health Monitoring, Struct. Health Monit., 22, 2082–2127, https://doi.org/10.1177/14759217221111141, 2022. a
Download
Short summary
Selecting the best model for monitoring industrial machines is challenging due to limited data and varying conditions. While deep learning (DL) is often considered ideal, it does not always perform well. We compared DL with traditional methods focused on feature extraction and classification. Our tests on seven datasets revealed that traditional methods are more reliable when machine conditions change, highlighting the importance of simpler, interpretable models for industrial monitoring.
Share