Articles | Volume 3, issue 1
https://doi.org/10.5194/jsss-3-121-2014
https://doi.org/10.5194/jsss-3-121-2014
Regular research article
 | 
12 Jun 2014
Regular research article |  | 12 Jun 2014

Multi-channel IR sensor system for determination of oil degradation

T. Bley, E. Pignanelli, and A. Schütze

Related authors

Domain shifts in industrial condition monitoring: a comparative analysis of automated machine learning models
Payman Goodarzi, Andreas Schütze, and Tizian Schneider
J. Sens. Sens. Syst., 14, 119–132, https://doi.org/10.5194/jsss-14-119-2025,https://doi.org/10.5194/jsss-14-119-2025, 2025
Short summary
Influence of measurement uncertainty on machine learning results demonstrated for a smart gas sensor
Tanja Dorst, Tizian Schneider, Sascha Eichstädt, and Andreas Schütze
J. Sens. Sens. Syst., 12, 45–60, https://doi.org/10.5194/jsss-12-45-2023,https://doi.org/10.5194/jsss-12-45-2023, 2023
Short summary
Influence of synchronization within a sensor network on machine learning results
Tanja Dorst, Yannick Robin, Sascha Eichstädt, Andreas Schütze, and Tizian Schneider
J. Sens. Sens. Syst., 10, 233–245, https://doi.org/10.5194/jsss-10-233-2021,https://doi.org/10.5194/jsss-10-233-2021, 2021
Short summary
Random gas mixtures for efficient gas sensor calibration
Tobias Baur, Manuel Bastuck, Caroline Schultealbert, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 411–424, https://doi.org/10.5194/jsss-9-411-2020,https://doi.org/10.5194/jsss-9-411-2020, 2020
Short summary
Siloxane treatment of metal oxide semiconductor gas sensors in temperature-cycled operation – sensitivity and selectivity
Caroline Schultealbert, Iklim Uzun, Tobias Baur, Tilman Sauerwald, and Andreas Schütze
J. Sens. Sens. Syst., 9, 283–292, https://doi.org/10.5194/jsss-9-283-2020,https://doi.org/10.5194/jsss-9-283-2020, 2020
Short summary

Related subject area

Sensor principles and phenomena: Optical and infrared sensors
Novel low-cost instrumentation based on an RGB sensor using molecularly imprinted polymers (MIPs) for the rapid detection of aqueous 2-methoxphenidine (2-MXP)
Serguei Stoukatch, Francois Dupont, Joseph W. Lowdon, Gil van Wissen, Kasper Eersels, Bart van Grinsven, and Jean-Michel Redouté
J. Sens. Sens. Syst., 14, 111–118, https://doi.org/10.5194/jsss-14-111-2025,https://doi.org/10.5194/jsss-14-111-2025, 2025
Short summary
Enhancing human–robot collaboration with thermal images and deep neural networks: the unique thermal industrial dataset WLRI-HRC and evaluation of convolutional neural networks
Sinan Süme, Katrin-Misel Ponomarjova, Thomas M. Wendt, and Stefan J. Rupitsch
J. Sens. Sens. Syst., 14, 37–46, https://doi.org/10.5194/jsss-14-37-2025,https://doi.org/10.5194/jsss-14-37-2025, 2025
Short summary
Miniaturized two-chamber photoacoustic CO2 sensor with a wafer-bonded MEMS (micro-electro-mechanical systems) detector
Simon Gaßner, Simon Essing, David Tumpold, Katrin Schmitt, and Jürgen Wöllenstein
J. Sens. Sens. Syst., 13, 219–226, https://doi.org/10.5194/jsss-13-219-2024,https://doi.org/10.5194/jsss-13-219-2024, 2024
Short summary
Concatenated Bragg grating fiber-optic sensors for simultaneous measurement of curvature, temperature, and axial pressure
Sohrab Shojaei Khatouni, Sven Zakowski, Reza Hosseini Vedad, Mustafa Masjedi, Akram Askar, Jan Christian Eli Ewald, and Hoc Khiem Trieu
J. Sens. Sens. Syst., 13, 147–155, https://doi.org/10.5194/jsss-13-147-2024,https://doi.org/10.5194/jsss-13-147-2024, 2024
Short summary
Optical and tactile measurements on SiC sample defects
Jana Grundmann, Bernd Bodermann, Elena Ermilova, Matthias Weise, Andreas Hertwig, Petr Klapetek, Jila Rafighdoost, and Silvania F. Pereira
J. Sens. Sens. Syst., 13, 109–121, https://doi.org/10.5194/jsss-13-109-2024,https://doi.org/10.5194/jsss-13-109-2024, 2024
Short summary

Cited articles

Agoston, A., Ötsch, C., Zhuravleva, J., and Jakoby, B.: An IR-Absorption Sensor System for the Determination of Engine Oil Deterioration, Proceedings of IEEE Sensors Conference, 463–466, https://doi.org/10.1109/ICSENS.2004.1426200, 2004.
Agoston, A., Schneidhofer, C., Dörr, N., and Jakoby, B.: A concept of an infrared sensor system for oil condition monitoring, e & i Elektrotechnik und Informationstechnik, 125/3, 71–75, https://doi.org/10.1007/s00502-008-0506-3, 2008.
ASTM International: Standard Practice for Condition Monitoring of Used Lubricants by Trend Analysis Using Fourier Transform Infrared (FT-IR) Spectrometry, ASTM International, E2412-04, 2007.
ASTM International: Standard Specification for Reagent Water, ASTM International, D1193-06, 2011a.
ASTM International: Standard Test Method for Acid and Base Number by Color-Indicator Titration, ASTM International, D974-11, 2011b.
Download
Share